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Abstract

Residual maximum likelihood estimation (REML) is of-
ten now the preferred method for estimating parameters
in linear models with correlated or heteroscedastic er-
rors. This note shows that the residual likelihood is a
conditional likelihood where the conditioning is on an
appropriate sufficient statistic to remove dependence on
nuisance parameters. This interpretation allows a very
concise derivation of the REML likelihood without the
need for transformation and generalizes naturally and
exactly to non-normal models in which there is a minimal
sufficient statistic for the fitted values. The conditional
interpretation of REML is applied to dispersion mod-
elling in generalized linear models. It is also applied to
estimate the index parameter in a power-variance family
of generalized linear models.

1 Introduction

Consider the general linear model

y = Xβ + e

where y is an n × 1 vector of responses, X is an n × p
design matrix of full column rank and e ∼ N(0,Ω) is
a random vector. The variance matrix Ω is a function
of a q-dimensional parameter γ, and is assumed positive
definite for γ in a neighbourhood of the true value. For
any given value of γ, maximum likelihood or generalized
least squares lead to the estimator

β̂ = (XTΩ−1X)−1XTΩ−1y

for β. The problem considered in this paper is the esti-
mation of γ.

Patterson and Thompson (1971) introduced residual
maximum likelihood estimation as a method of estimat-
ing variance components in the case of unbalanced in-
complete block designs. The actual derivation of the
likelihood function was somewhat involved, and this
prompted Harville (1974), Cooper & Thompson (1977)
and Verbyla (1990) to give alternative derivations. In
all of these the residual likelihood is represented as the

marginal likelihood of the error constrasts. This makes
generalization of the residual likelihood principle to non-
linear models or non-normal distributions difficult since
zero mean error contrasts do not generally exist. The
purpose of this note is to show that the residual likeli-
hood can be viewed also as a conditional likelihood where
the conditioning is on an appropriate sufficient statistic
to remove dependence on the nuisance parameters. This
interpretation may be of use in teaching because it clar-
ifies the motivation for residual maximum likelihood es-
timation and because it allows a very concise derivation
of the REML likelihood without the need for transfor-
mation of the data. It generalizes naturally and exactly
to non-normal models in which there exists a minimal
sufficient statistic for the fitted values.

The plan of this paper is as follows. Conditional like-
lihoods are discussed briefly in Section 2. The condi-
tional derivation of REML is given in Section 3, and its
generalization to generalized linear models in Section 4.
Section 5 discusses dispersion estimation in generalized
linear models, including the case where the dispersion is
modelled using a link-linear model as in Smyth (1989).
Section 6 discusses the estimation of parameters in the
variance function, in a case where the exact likelihood
can be specified. Emphasis in Sections 5 and 6 is given
to the one-way experimental layout, since in this case
the conditional likelihood can be written down in closed
form. In other cases numerical evaluation or asymptotic
approximation is necessary, and methods to do this are
discussed also.

2 Conditional Likelihood

Consider an arbitrary likelihood function L(y;β,γ)
where β is a vector of nuisance parameters. If there
exists a statistic t(y;γ), possibly depending on γ, that
is sufficient for β then the nuisance parameters can be
eliminated from the likelihood by conditioning on t. If
the maximum likelihood estimation of β is a one-to-one
function of t, then it can be argued that there is no avail-
able information in t about γ in the absence of knowl-
edge of β, i.e., the information in t is entirely consumed
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in estimating β. Therefore there should be no informa-
tion loss in the conditional approach. The parameter of
interest, γ, can be estimated by maximizing the condi-
tional log-likelihood `y|t(y;γ) = `y(y;β,γ)− `t(y;β,γ)
which does not depend on β.

The idea of conditioning to remove nuisance param-
eters is an old one (Bartlett, 1936, 1937). Kalbleisch
and Sprott (1970) give an extensive discussion including
the case in which t depends on γ. General expressions
for approximate conditional likelihoods based on saddle
point approximations have been developed by Barndorff-
Nielsen (1983) and Cox and Reid (1987). A long chain
of related work is referenced in Cox and Reid (1987) and
McCullagh and Nelder (1989, Chapter 7). Specific ap-
plication to generalized linear models in made by Davi-
son (1988).

3 A Conditional Derivation

Let y and β̂ be as in Section 1. For any Ω, β̂
is complete and minimal sufficient for β, so we can
eliminate β from the likelihood by conditioning on β̂.
Since β̂ ∼ N [β, (XTΩ−1X)−1], the conditional log-
likelihood is `y|β̂(y;γ) = `y(y;β,γ) − `β̂(y;β,γ) =

−n2 log(2π) − 1
2 log |Ω| − 1

2 (y − Xβ)TΩ−1(y − Xβ) +
p
2 log(2π)− 1

2 log |XTΩ−1X|+ 1
2 (β̂ − β)TXTΩ−1X(β̂ −

β) = n−p
2 log(2π)− 1

2 log |Ω|− 1
2 log |XTΩ−1X|− 1

2y
TPy

where P = Ω−1−Ω−1X(XTΩ−1X)−1XTΩ−1. This dif-
fers from the likelihood function given by Harville (1974)
and Cooper and Thompson (1977) only in that it lacks
the constant Jacobian term, − 1

2 log |XTX|, since no
transformation of the data has been used.

That the conditional likelihood is equivalent to the
marginal distribution of the error contrasts can be seen
by transforming y to β̂ and y2 = LTy where L is a
n×(n−p) matrix of full column rank satisfying LTX = 0.

Conditionally, β̂ is constant, so maximizing the condi-
tional likelihood of y is equivalent to maximizing the
conditional likelihood of y2. Furthermore, y2 and β̂ are
independent so the conditional distribution of y2 is the
same as its marginal distribution.

In the above derivation, `y is decomposed as the sum
of a marginal and a conditional likelihood. Estimation
of γ proceeds by maximizing the conditional and then β
is estimated by maximizing the marginal `β̂ .

4 Generalized Linear Models

The generalization of REML to generalized linear mod-
els can now be stated. Consider the probability density

function defined by

f(y; θ, φ) = exp[{yθ − κ(θ)}/φ+ c(y, φ)]

For given values of φ, this is a linear exponential fam-
ily density function. Following Jørgensen (1987), the
distribution defined by f(y; θ, φ) is called an exponen-
tial dispersion model with dispersion parameter φ, and
is denoted ED(µ, φ) where µ = E(y) = κ̇(θ). Let
yi ∼ ED(µi, φi), i = 1, . . . , n, be independent random
variables. A generalized linear model arises if a link-
linear model is assumed for the means, g(µi) = xTi β
where xi is a vector of covariates, β is an unknown p-
vector of regression parameters and g() is a known link
function. We assume also that the dispersions φi depend
on an unknown parameter vector γ, for example through
a link-linear model h(φi) = zTi γ as in Smyth (1989),
where zi is a vector of covariates.

Let Φ = diag(φi) and X be the n × p matrix with
xTi as ith row. We assume g() to be the canonical link
function such that g(µi) = θi, so that t = XTΦ−1y is a
complete sufficient statistic for β. We define the REML
estimate of γ to be that which maximizes the conditional
likelihood of y given t.

REML can also be used to estimate parameters in
the variance function of a generalized linear model if
the probability density can be completely specified. Let
ψ be a parameter vector which indexes a family of
exponential dispersion models, EDψ(µ, φ), and assume
yi ∼ EDψ(µi, φi) with µi and φi as given above. In gen-
eral the functions κ(), c() and g() will depend on ψ, and
var(y) = φiv(µi,ψ) where v(µ,ψ) = κ̈(θ). We define the
REML estimates of ψ and γ to be those which maximize
the conditional likelihood of y given t.

The next two sections of this paper work out REML
estimates for certain generalized linear models in which
the conditional likelihood can be obtained in closed form.

5 Dispersion Estimation

5.1 The one-way layout

Consider a generalized linear model with means de-
scribed by a one-way classification, i.e., let yij , i =
1, . . . , b, j = 1, . . . , ni, be independent random variables
with yij ∼ ED(βi, γ). The group mean ȳi is sufficient for
βi and is distributed as ED(βi, γ/ni). The conditional
log-likelihood is

`y|β̂ =

b∑
i=1


ni∑
j=1

log f(yij ; θi, γ)− log f(ȳi; θi, γ/ni)





=

b∑
i=1


ni∑
j=1

c(yij , γ)− c(ȳi, γ/ni)


For example suppose the yi are normally distributed.

In that case c(y, γ) = − 1
2 log γ − 1

2y
2− 1

2 log 2π (McCul-
lagh and Nelder, 1989), so

`y|β̂ = − 1

2γ
D(y)− N − b

2
log 2πγ − 1

2

b∑
i=1

log ni

where N =
∑
ni and D(y) =

∑
(yij − ȳi)2. The condi-

tional maximum likelihood estimator is γ̂ = D(y)/(N −
b), which is the usual residual mean square estimator of
the variance in one-way analysis of variance.

If the Yi are inverse-Gaussian, then c(y, γ) =
1/(2γy)− 1

2 log γ − 3
2 log y − 1

2 log 2π. In that case

`y|β̂ = − 1

2γ
D(y)− N − b

2
log 2πγ

−3

2

b∑
i=1

 ni∑
j=1

log yij − log ȳi

− 1

2

∑
i

log ni

where

D(y) =

b∑
i=1

ni∑
i=1

(
1

yij
− 1

ȳi

)
=

b∑
i=1

ni∑
i=1

(yij − ȳi)2

ȳ2i yij

The REML estimator of γ is the residual mean square
deviance, γ̂ = D(y)/(N − b).

In both normal and inverse-Gaussian cases, the REML
estimator γ̂ is uniform minimum variance unbiased for
γ, and (N − b)γ̂/γ ∼ χ2

N−b independently of the ȳi.
For the gamma distribution we have c(y, γ) =

log(y/γ)/γ − log y − log Γ(1/γ) so

`y|β̂ =
1

γ

b∑
i=1

ni∑
j=1

log(Yij/Ȳi)−N log Γ(1/γ)

+

b∑
i=1

log Γ(ni/γ)−
b∑
i=1

 ni∑
j=1

log Yij − log Ȳi


This is an exponential family likelihood with canon-
ical parameter ν = 1/γ, sufficient statistic D(y) =∑b
i=1

∑ni

j=1 log(Yij/Ȳi) and cumulant function λ(ν) =

N log Γ(ν) −
∑b
i=1 log Γ(niν). The REML estimator of

γ is obtained by equating D(y) to its expectation,

D(y) = λ̇(ν) = Nψ(ν)−
b∑
i=1

niψ(niν)

where ψ() is the digamma function. This can be com-
pared to maximum likelihood estimation of γ which
would have log(ν) in place of ψ(niν) in the last term.
Compare with Cox and Reid (1987, p. 12) and McCul-
lagh and Nelder (1989, p. 295).

5.2 Dispersion Modelling

Now consider the one-way layout with a link-linear
model for the dispersion, i.e., suppose that the Yij ∼
ED(βi, φij) and the φij are a function of a q-vector of
parameters γ. The log-likelihood is

`y =

b∑
i=1

n∑
j=1

{
1

φij
[yijθi − κ(θi)] + c(yij , φij)

}

=

b∑
i=1

 1

αi
[tiθi − κ(θi)] +

ni∑
j=1

c(yij , φij)


where αi = (

∑ni

i=1 φ
−1
ij )−1, ti = αi

∑ni

j=1 φ
−1
ij yij and

βi = κ̇(θi). Each ti is sufficient for βi and is distributed
as ED(βi, αi). The conditional log-likelihood of y given
the ti is

`y|t =

b∑
i=1


ni∑
j=1

c(yij , φij)− c(ti, αi)


5.3 General Mean Models

We now leave the one-way layout and consider gen-
eral link-linear models for the µi. Suppose that yi ∼
ED(µi, φi), i = 1, . . . , n, with link-linear models for both
µi and φi as described in Section 3. The sufficient statis-
tic for β is t = XTΦ−1y, and this has cumulant function

κt(β) =

n∑
i=1

φ−1i κ(xTi β)

where κ() is the cumulant function of the yi. The cumu-
lant generating function of t is K(s) = κt(β+s)−κt(β),
so the probability density function of t is given by

f(t) =

∫
exp

{
n∑
i=1

κ(xTi (β + s))− κt(xTi β)

φi
− sT t

}
ds

The required conditional log-likelihood is

`y|t = `y(y;β,γ)− log f(t)

which doesn’t depend on β. Except in the normal case,
the cumulant generating function of t is difficult to invert
analytically, so either numerical evaluation or approxi-
mation will generally be necessary.



One possible approximation is to use, following a sug-
gestion of A. T. James (James and Wiskich, 1993), the
asymptotic normal approximation to the distribution
of β̂. This leads to the approximate conditional log-
likelihood

`y|β̂ = `y(y;β,γ) +
p

n
log 2π − 1

2
log |XTWX|

+
1

2
(β̂ − β)XTWX(β̂ − β)

where W = diag{φ−1i v(µi)} and v() is the variance func-
tion defined by v(µ) = κ̇(θ). This expression depends on

β, but only slightly, so we can set β = β̂, yielding the
approximation

`y(y, β̂,γ) +
p

n
log 2π − 1

2
log |XTWX| (1)

i.e., the log-profile likelihood for γ adjusted by the log-
determinant of the covariance matrix of β̂. This method
is applicable even when the link function g() is not
canonical, although then t is not sufficient so it is im-
possible to entirely eliminate β from the estimation of
γ.

Another approach which leads to the same approxima-
tion in this case is to use the modified profile likelihood
of Barndorff-Nielsen (1983) together with a suggestion
of Cox and Reid (1987) for orthogonal parameters. The
modified profile likelihood for γ is

`y(y; β̂γ ,γ)− 1

2
log |jββ |+ log

∣∣∣∣∣ ∂β̂∂β̂γ
∣∣∣∣∣

where β̂γ is the maximum likelihood estimator for β for

given γ, β̂ is the unrestricted maximum likelihood es-
timator, jββ is the observed information matrix for β

evaluated at β̂γ , and `y(y; β̂γ ,γ) is the log-profile like-

lihood for γ. Since β and γ are orthogonal, β̂γ varies

only slowly with γ so the derivative term ∂β̂/∂β̂γ can
be neglected. For the current model we have

jββ = XTWX

and the modified profile likelihood is, apart from con-
stants, the same as (1).

For normal linear models, the approximate conditional
likelihood (1) is precisely the same as the standard resid-
ual likelihood given in Section 3. When the yi are
inverse-Gaussian and γ is scalar, modified profile like-
lihood leads to the residual mean deviance as the esti-
mator of the dispersion. In other cases, the effectiveness
of the approximation needs to be evaluated. This is not
done here as our primary intention is to clarify the exact
conditional approach.

Table 1: Simulation results for estimating γ and φ. One
thousand data sets were generated. True values are γ =
1.5 and φ = 1.0.

(a) Estimation of γ

Mean Std MSE
Maximum likelihood 1.4731 0.0711 0.0058
REML 1.4873 0.0769 0.0061
Extended Quasi-Lik. 1.2345 0.0961 0.0798
Pseudo-Likelihood 1.5494 0.1894 0.0383

(b) Estimation of φ

Mean Std MSE
Maximum likelihood 0.9010 0.1809 0.0425
REML 0.9915 0.2048 0.0420
Extended Quasi-Lik. 1.0008 0.2057 0.0423
Pseudo-Likelihood 0.9015 0.1904 0.0460

6 Variance Function Estimation

Suppose that γ is an unknown parameter than indexes
a family of generalized linear models. That is, suppose
that yi ∼ EDγ(µi, φ), i = 1, . . . , n where g(µi) = xTi β
and var(yi) = φv(µi, γ). The REML estimators of γ
and φ are those which maximize the conditional like-
lihood of y given XTy. The purpose of this section
is to consider a potentially important example, that of
the compound Poisson exponential dispersion models in-
troduced by Jørgensen (1987). The compound Poisson
models have power variance functions v(µ, γ) = µγ with
γ between one and two. The compound Poisson distri-
butions converge to Poisson as γ → 1 and to gamma as
γ → 2, and so may be viewed as intermediate between
the Poisson and gamma families. They are also posi-
tive and continuous except for mass at zero. Compound
Poisson generalized linear models have potential appli-
cations in modelling continuous data with exact zeros,
such as weather variables, insurance claims and waiting
times, but the problem of estimating γ has not been sat-
isfactorily solved (Burridge, 1987; Gilchrist, 1987).

The compound Poisson density function has been de-
rived by Jørgensen (1992). See also Tweedie (1984). It
has θ = µ2−γ/(2− γ), κ(θ) = µ1−γ/(1− γ) and

c(y, φ) = log

∞∑
j=1

{α(α+ 1)α+1φ−α−1yα}j

j!Γ(jα)

where α = (2 − γ)/(γ − 1). Tweedie (1984, p. 586) has
identified exp c(y, φ) as an instance of Wright’s (1933)
generalized Bessel function. It is not expressible however



in terms of the more common Bessel functions.
A simulation experiment was conducted to compare

four estimators of φ and γ. These were maximum
likelihood estimation, REML, extended quasi-likelihood
(Nelder and Pregibon, 1987) and pseudo-likelihood (Da-
vidian and Carroll, 1987). Data was simulated from
a one-way classification with n1 = . . . = n5 = 10,
β = (0.1, 0.5, 1, 2, 5)T , φ = 1 and γ = 1.5. One thou-
sand such data sets were generated and, for each, γ and
φ were estimated using the four methods. The results
are tabulated in Table 1.

REML had the smallest bias for estimating γ. Maxi-
mum likelihood had the smallest standard deviation, and
also the smallest mean square error, although this was
not significantly different from that of REML. Pseudo-
likelihood was also approximately unbiased, but with a
largest standard deviation. Extended quasi-likelihood
had a competitive standard deviation, but was biased
down giving it the largest mean square error. Experi-
mentation showed that the bias was due to the offset of
1/6 for zero observations. Positive and negative biases
could be achieved by relatively small changes to this off-
set.

REML and extended quasi-likelihood were almost
equally effective for estimating φ. The maximum like-
lihood estimator had again the smallest standard devi-
ation and a mean square error not significantly greater
than REML and extended quasi-likelihood, but was bi-
ased down by about 10%, as expected given the group
size of ten. The pseudo-likelihood estimator was also
biased down by about the same amount, despite incor-
porating a correction for degrees of freedom as recom-
mended by Davidian and Carroll (1987).

We conclude that REML, in its conditional likelihood
guise, is successful in reducing the bias of the maximum
likelihood estimator while incurring minimal inflation
to its standard deviation. Neither of its competitors,
extended-quasi and pseudo likelihood, were as successful
in doing this.
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