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The traditional approach to the analysis of data from two-colour spotted microarrays is to
compute the log-ratio of the expression values for each spot (Chen et al, 1997). The log-ratios
are then treated as the responses in any statistical analysis of the data (Yang and Speed,
2003; Smyth, 2004). Relatively few papers have analysed spotted microarrays in terms of the
separate red and green log-intensities (Kerr et al, 2000; Jin et al, 2001; Wolfinger et al, 2001).
The second and third of these papers popularised a mixed model approach in which each spot
is treated as a randomised block of size two.

A number of papers starting with Yang et al (2001) have summarised red and green
channel intensities in terms of M -values (log-ratios) and A-values (spot log-intensities) for the
purposes of graphical displays and normalisation. This paper demonstrates that the usefulness
of this partition arises in good part from the fact that the M and A-values for a given spot
are approximately independent even though the individual intensities are highly correlated.
This paper reformulates the mixed model approach in terms of the M and A-values. This
approach not only presents an efficient algorithm for estimating the mixed model but also
elucidates the difference between the traditional log-ratio based approach and the analysis of
individual-channels. The individual-channel approach amounts to recovering information from
the between spot error stratum, i.e., from comparisons between the A-values.

There are as yet no papers which compare individual-channel with log-ratio analyses.
This paper quantifies the efficiency gains which can arise from individual-channel analysis.
The paper goes on to develop two new methods for individual-channel analysis which borrow
information from the ensemble of probes when making inference about each individual probe.
The first is an empirical Bayes method of smoothing the within and between spot components
of variance. The second is based on pooling the within-spot correlation estimators. The new
methods result in more stable inference than does the usual mixed model approach, especially
when the number of arrays is small.

Individual channel analysis raises new and non-trivial normalisation issues in addition
to those which arise in log-ratio analyses (Yang and Thorne, 2003). In this paper it will be
assumed that appropriate normalisation has already been done.

M-A Models

Each spot on each microarray will yield foreground intensities estimatesGf andRf , for the green
and red channels respectively, and background estimates Gb and Rb. Write G = log2(Gf −Gb)
and R = log2(Rf−Rb) for the green and red background corrected log-intensities. For simplicity
we will assume that the background intensities have been adjusted so that all the background
corrected intensities are positive and all the R and G log-intensities are defined. Write M =
R−G for the log-ratio and A = (R +G)/2 for the average intensity of the two channels.

Suppose that the experiment consists of n microarrays each printed with N genes. For
gene g and array i write ygi1 = Ggi for the green log-intensity and ygi2 = Rgi for the red log-
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intensity. Assume that ygij ∼ N(µgij, σ
2
g) where µgij is an unknown effect and σ2

g is an unknown
variance, common across arrays and channels but possibly different across probes.

Each spot consists of a block yielding two observations. We assume that log-intensities
are independent across arrays but are correlated within spots. Specifically we assume that ygij

and yg′i′j′ are independent if i 6= i′ but that corr(ygi1, ygi2) = ρg where ρg is an unknown intra-
spot correlation. We expect ρg to be much larger than zero to reflect the strong correlation
between intensities on the same spot. The correlations between different probes on the same
microarrays, i.e., between ygij and yg′ij′ for g 6= g′, will be unspecified. For each spot we have
Mgi = ygi2 − ygi1 and Agi = (ygi2 + ygi1)/2. Notice that Mgi and Agi are independent with

varMgi = σ2
Mg = 2σ2

g(1− ρg), varAgi = σ2
Ag = σ2

g(1 + ρg)/2

Heteroscedastic Regression

Consider the analysis of the data ygij for a given gene g. Write yg for the 2n-vector of ygij

and µg for the 2n-vector of µgij, i = 1, . . . , n, j = 1, 2. The approach of Wolfinger et al
(2001) is to model yg with a mixed model in which the spots appear as random blocks of size
two. An alternative but equivalent formulation is to represent the data in terms of the M and
A-values, which converts a dependent model into an independent but heteroscedastic model.
Suppose that µg = Xβg where X is a suitable design matrix and βg is a vector of unknown
coefficients. The design matrix might for example be a simple indicator matrix corresponding
to different RNA sources hybridised to the arrays in which case the elements of βg are mean
log-intensities for those RNA sources. Write Mg = (Mg1, . . . ,Mgn)T and Ag = (Ag1, . . . , Agn)T .
Then E(Mg) = CT

MXβg and E(Ag) = CT
AXβg with CT

M = (−1, 1)⊗In and CT
A = (1/2, 1/2)⊗In.

The model for M and A values can be written

zg = Zβg + εg(1)

where zT
g = (Mg, Ag)T is the 2n-vector of M and A-values, Z = (CM , CA)TX and εg is

a vector of normal errors with diagonal covariance matrix Σg. The matrix Σg has diagonal
elements equal to σ2

Mg and σ2
Ag. Thus (1) defines a heteroscedastic linear model, which can be

estimated using the efficient REML algorithm of Smyth (2002).

Efficiency of Individual-Channel Analysis

The formulation (1) shows that individual-channel analysis amounts to augmenting the usual
log-ratio analysis by a further n-responses corresponding to the A-values. The extra information
in the individual-channel analysis arises therefore from the A-values.

Replicated arrays. The simplest replicated microarray experiment consists of a series of
arrays all comparing the same two RNA sources. In this case the M -values contain all the
information about the fold changes and no information is gained from the A-values.

Common reference design. The second simplest design is that comparing two RNA sources,
B and C say, through a common reference. Suppose that there are n/2 arrays comparing B with
the reference and n/2 comparing C with the reference. Consider the analysis for a given gene.
It is easily seen that the mean difference in M -values between the two groups, M̄B − M̄C , is an
unbiased estimator the log-fold-change between the two groups with variance 8σ2(1−ρ)/n. The
mean difference in A-values, 2(ĀB − ĀC), is an independent unbiased estimator with variance
8σ2(1 + ρ)/n. The extra Fisher information provided by the A-values, as a proportion of that
provided by the M -values, is therefore (1 − ρ)/(1 + ρ). If ρ = 0.85, for example, the extra
information provided by the A-values is about 8%.
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Unconnected designs. Single channel analysis is most useful in the case of unconnected de-
signs for which some comparisons cannot be made through the M -values. Suppose for example
that n/2 arrays are hybridised with RNA from sources B and C and n/2 arrays are hybridised
with sources D and E, and suppose that interest lies in the pairwise comparisons between the
four RNA sources. The M -values provide information only about the direct comparisons C−B
and E − D, which are estimated with variance 4σ2(1 − ρ)/n. All the other comparisons are
indirect and are estimated, using both M and A-values with variance 4σ2/n. The relative
efficiency of the indirect versus the direct comparisons is therefore 1− ρ.

Small Sample Inference and Shrinkage of Variance Components

A disadvantage of the mixed model approach is that exact small sample distributions are
seldom available for test statistics. The difficulty arises from the fact that the mixed model
is fitted by a general residual likelihood criterion (REML) and there is no general way to
associate degrees of freedom with the variance component estimators or with the standard
errors of estimated coefficients or contrasts. The heteroscedastic regression model (1) gives a
way around this problem. The effective degrees of freedom associated with σ̂2

Mg and σ̂2
Ag are

dMg and dAg respectively where dM = n −∑n
i=1 hi and dA = n −∑2n

i=n+1 hi and the hi are the
leverages from the linear model (1). This means that approximately σ̂2

Mg ∼ σ2
Mgχ

2
dMg

/dMg and

σ̂2
Ag ∼ σ2

Agχ
2
dAg
/dAg.

These approximations have a number of consequences. Firstly is it possible to use Sat-
terthwaite approximations to construct approximate t-statistics for any contrasts in the model
(1). Secondly it is possible to apply the empirical Bayes method of Smyth (2004) to shrink the
estimators σ̂2

Mg and σ̂2
Ag, and hence the ρ̂g, towards common values.

Common Correlation Inference

Even after shrinking, it is likely that some of the estimated within-spot correlations ρ̂g will be
negative for any given data set, an outcome which is untuitively unreasonable. One possibility is
to constrain the correlations to be non-negative. Another approach is to apply a more drastic or
hard smoothing to the correlations. The within-spot correlation arises from the technical design
of two colour arrays rather than from biological variation or from characteristics of the probes or
RNA targets being compared. It is therefore reasonable to assume that the correlations will be
relatively consistent across the genes. This leads to the argument that the correlation estimators
ρ̂g may be pooled between genes. Under the common correlation assumption ρg = ρ, the REML

estimator of θ = tanh−1(ρ) is available in closed form, exp(2θ̂) = 4(
∑G

g=1 σ̂
2
Ag)/(

∑G
g=1 σ̂

2
Mg). If

the observations ygij were independent across probes, θ̂ would be the REML estimator of θ. The
estimator is generally consistent even given dependence between the probes. An alternative
estimator, somewhat less efficent but also consistent, is given by

1

G

G∑
g=1

{tanh−1(ρ̂g)− ψ(dAg/2) + log(dAg/2) + ψ(dMg/2)− log(dMg/2)}

The pooled estimator θ̂ and the corresponding ρ̂ = tanh(θ̂) can be treated as known at the
individual probe level, because the estimator is a consensus estimator based on all the genes.
This means that the heteroscedastic regression model (1) can be transformed to an ordinary
homoscedastic regression model. Simply re-scale the zg to have the same variance by dividing
the first n elements by {2(1− ρ̂)}1/2 and the last n elements by {(1 + ρ̂)/2}1/2. The rows of Z
are re-scaled the same way. This produces the ordinary regression model zg = Zβ + εg with
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εg ∼ σ2
gI2n. Methods based on this strategy has been implemented in the software package

limma for R.

Data Example

The common correlation model was applied to a study by Rebecca McCracken and Steve
Gerondakis at the Walter and Eliza Hall Institute involving 21 Incyte microarrays involving both
direct and indirect comparisons. The median ρ̂g was 0.93 after print-tip-loess normalisation
of the M -values but no normalisation of the A-values, and 0.84 after quantile normalization
of the A-values. This reduction in correlation shows the importance of the between-array
normalization. With ρ = 0.84, the relative efficiency of an indirect vs a direct contrast is 0.16,
i.e., direct contrasts are more than six times as efficient as indirect comparisons.
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RÉSUMÉ

Individual-channel analysis of two-colour microarrays is compared with the traditional approach
in terms of log-ratios. New methods are developed for individual-channel analyses using mixed
models. The mixed model formulation is transformed into an “MA-Model”, which is a het-
eroscedastic regression model for the log-ratios and log-spot-intensities. This approach (i) is
the basis of a robust computational algorithm, (ii) facilitates empirical Bayes style moderation
of the variance components, leading to more stable inference with small sample sizes, and (iii)
provides a very simple quantification of the extra information which can be recovered from the
individual-channel analysis.
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L’analyse individuelle des canaux d’une biopuce (puce à ADN) à deux couleurs sera comparée
avec l’approche traditionnelle utilisant des logarithmes de ratios. De nouvelles méthodes util-
isant des modèles mixtes sont développes pour les analyses utilisant les canaux individuelle-
ment. La formulation du modèle mixte est transformée en un “modèle MA”, qui est un modèle
de régression hétéroscédastique pour les logarithmes de ratios et les logarithmes des intensités
des points (“spots”). Cette approche (i) est la base d’un algorithme de calcul robuste; (ii) fa-
cilite la modération des composants de variance dans le style Bayes empirique, menant à une
inférence plus stable pour des petits échantillons; et (iii) fournit une très simple quantification
de l’information supplémentaire qui peut être extraite de l’analyse individuelle des canaux.
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