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Abstract

Some computational aspects of maximum likelihood estimation for extended

Poisson process models are discussed, with computation of log-likelihood deriva-

tives being of particular interest. A method is proposed for computation of these

derivatives that involves extending the matrix of transition rates describing the

underlying stochastic process. This scheme is designed for parametric forms of

the transition rates that can include covariate dependence.
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1 Introduction

Extended Poisson process models provide a general framework for the analysis

of discrete data (Faddy, 1997a, 1997b, 1998). They involve representing a

discrete distribution as the distribution of the number of events occurring in a

�nite time interval of a state-dependent Markov birth process. In such a process

the rates at which events occur, known as the transition rates, are modelled as

a function of n, the number of accumulating events. It is this state-dependency,

or n-dependent form, of the rates which determines the dispersion properties

of the resulting discrete distribution. The generality of the approach lies in

the fact that any discrete distribution with non-negative support has such a

representation (Faddy, 1997a) and therefore other models for discrete data can

be seen as special cases. However, these extended Poisson process models do

involve more intensive computation than other more traditional models for

discrete data.

In order to form the log-likelihood, probabilities must be obtained by solv-

ing the Chapman-Kolmogorov forward equations of the underlying stochastic

process, for which an exact analytical form suitable for computational purposes

is not available. Numerical solutions of the Chapman-Kolmogorov equations

are therefore required. There are two alternatives here: utilising a di�eren-

tial equation solver or computing the exponential of the Q-matrix of transition

rates. Recent work (Sidje, 1998) has led us to consider the latter of these.

Sidje's expokit package has been speci�cally developed for applications such

as Markov chain models where the matrices to be exponentiated are typically

large and sparse, but their matrix exponentials are large and dense. Therefore,

rather than computing the matrix exponential in its entirety, expokit considers

the operation of the matrix exponential on a vector.
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The log-likelihood must then be maximised over the parameters specifying

the transition rates. In Faddy (1997a, 1997b, 1998) the maximization is per-

formed in MATLAB using a simplex search method. However for large numbers

of parameters and large count sizes this search method can be computationally

ine�cient; larger counts mean computations involving larger matrix exponen-

tials and hence an increase in the per iteration time, while more parameters

result in an increased number of iterations. To improve the maximization pro-

cess, a convenient method for computing �rst and second derivatives of the

log-likelihood function was therefore sought.

Moreover, computation of these derivatives as a part of the maximization

process means standard errors for estimates can be readily obtained and used

to construct Wald tests. Similarly, �rst and second derivatives can be used to

construct score tests.

The method proposed here for computation of derivatives involves extending

the Q-matrix to be exponentiated. This is outlined is section 4. In sections

2 and 3 extended Poisson process models are described, and in section 5 an

example data-set is used to demonstrate the application of the methods.

2 Extended Poisson process models

Extended Poisson process models derive their name from the fact that they are

based upon generalizing the simplest Markov birth process, the Poisson process.

This process describes a series of `events' occurring over time t such that the

probability of an event occurring in the time interval (t; t + �t) is ��t + o(�t),

independently of the occurrence of events up to time t (Cox and Miller, 1965).

The constant � here is the rate at which events occur, known as the transition

rate, and under this assumption of constant transition rates, the distribution
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of the number of events occurring in a �nite time interval of length t is Poisson

with mean �t.

The generalization of the Poisson process considered here is to have the

transition rates dependent on the number of accumulating events. That is, the

probability of an event occurring in the time interval (t; t+�t) is �(n)�t+o(�t),

where n is the number of events that have occurred by time t. The distribution

of the number of events occurring in any �nite time interval of such a state-

dependent Markov process is no longer Poisson. For example, any increasing

transition rate sequence �(n) gives rise to a distribution that is over-dispersed

relative to the Poisson distribution, while any decreasing transition rate se-

quence �(n) gives rise to a distribution that is under-dispersed relative to the

Poisson distribution (Ball, 1995). A linear increasing transition rate sequence

gives rise to the negative binomial distribution, while a linear decreasing tran-

sition rate sequence gives rise to the binomial distribution. Further, it has

been conjectured that a concave increasing sequence (negative second di�er-

ences) corresponds to over-disperison relative to the Poisson distribution, but

under-dispersion relative to the negative binomial distribution, while a convex

increasing sequence (positive second di�erences) corresponds to over-dispersion

relative to the negative binomial distribution. Similarly, a concave decreasing

sequence corresponds to over-dispersion relative to the binomial distribution,

but under-dispersion relative to the Poisson distribution, while a convex de-

creasing sequence corresponds to under-dispersion relative to the binomial dis-

tribution (Faddy, 1997b). In fact, any discrete distribution with non-negative

support has a unique representation as the distribution of the number of events

occurring in a �nite time interval of a state-dependent Markov birth process

(Faddy, 1997a), and hence the generality of this modelling approach is apparent.

In transition rate models such as those proposed by Faddy (1997a, 1997b,

4



1998), the n-dependence form is speci�ed parametrically. One or more param-

eters control the variation in the model and other parameters may be modelled

as some function of covariates to allow for the assessment of these e�ects. For

example, in a later section the model

�(n) =

8<
:

�0 n = 0

�1 n
c

n � 1:

will be considered. The c parameter here controls the variation. The c = 0

case is similar to a Poisson distribution with modi�ed probability at zero, while

c > 0 and c < 0 correspond to more and less variation, respectively, than the

c = 0 model (Faddy, 1998). The other parameters, �0 and �1, may be modelled

as log-linear functions of covariates,

�0 = exp(xT�0)

�1 = exp(xT�1);

where xT is a vector of covariates and �0 and �1 are vectors of covariate

coe�cients. The use of a log-linear form here will ensure that the transition

rates remain positive.

3 The Q-matrix

To construct the probability distribution pn(t); n � 0; arising from a Markov

birth process with birth rates, �(n) n � 0, it is necessary to solve a system

of di�erential equations from the underlying stochastic process, the Chapman-

Kolmogorov forward equations (Cox and Miller, 1965),

p
0

0(t) = ��(0)p0(t) with p0(0) = 1

p
0

n
(t) = �(n� 1)pn�1(t)� �(n)pn(t) with pn(0) = 0; n � 1: (1)
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In constructing discrete probability distributions from the solution of (1), the

time t may be taken to be one without any loss of generality.

Suppose it is required to calculate the probability of obtaining a count of

size N . The Chapman-Kolmogorov equations, (1), may be re-written in the

matrix-vector form,

dp(t)

dt
= p(t)Q; (2)

where p(t) is the vector of probabilities, (p0(t) p1(t) : : : pN (t) ), and Q is the

Q-matrix of transition rates,

Q =

0
BBBBBBBBB@

��(0) �(0) 0 � � � 0 0

0 ��(1) �(1) � � � 0 0
...

...
...

...
...

0 0 0 � � � ��(N � 1) �(N � 1)

0 0 0 � � � 0 ��(N)

1
CCCCCCCCCA
:

The solution of (1) may therefore be expressed in terms of the matrix exponen-

tial function,

p(t) = (1 0 : : : 0 0 ) exp(Qt);

or, with t taken to be one,

(p0 p1 : : : pN�1 pN ) = (1 0 : : : 0 0 ) exp(Q): (3)

The probability of obtaining a count of size N , pN , may therefore be computed

by taking the (N+1)th, or last, entry of the resulting matrix exponential vector

operation (3). The expokit software developed by Sidje (1998), for example,

may be used to perform this operation.
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4 The extended Q-matrix

To allow for computation of �rst and second derivatives of probabilities for

iterative maximization of a log-likelihood function, the Q-matrix of transition

rates may be extended as follows. Recall that throughout t will be taken to be

one.

4.1 First derivatives

In general, Q and p will be functions of parameters specifying the transition

rates and therefore the matrix-vector form of the Chapman-Kolmogorov equa-

tions (2) may be written as

@p

@t
= pQ: (4)

Suppose computation of @p=@a is required, where a is such a parameter. Then

di�erentiating (4) with respect to a,

@

@a

�
@p

@t

�
=

@p

@a
Q+ p

@Q

@a
:

On reversing the order of di�erentiation,

@

@t

�
@p

@a

�
=

@p

@a
Q+ p

@Q

@a
: (5)

Combining (5) with (4) gives,

@

@t

�
p

@p

@a

�
=

�
p

@p

@a

� 0
B@Q

@Q
@a

0 Q

1
CA: (6)
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Let Q� =

0
@Q

@Q
@a

0 Q

1
A, the extended blocked Q-matrix. Then the solution to

(6) is given by, �
p

@p
@a

�
= eT1 exp(Q

�
t);

where eT
1
is the initial vector for the left-hand side of (6), (1 0 : : : 0 0 0 : : : 0).

Therefore, in order to compute the vector of �rst derivatives, the matrix

exponential vector operation involves components of dimension twice the order

of the original Q-matrix. Note that the vector of probabilities is also computed

in this operation.

To allow for computation of second derivatives as well, such a Q� can be

further extended.

4.2 Second derivatives

Di�erentiating (5) again with respect to another parameter b, say, gives

@
2

@a@b

�
@p

@t

�
=

@
2p

@a@b
Q+

@p

@a

@Q

@b
+

@p

@b

@Q

@a
+ p

@
2Q

@a@b
:

So that combining the above with (5) and (6) together with,

@

@t

�
@p

@b

�
=

@p

@b
Q+ p

@Q

@b
;

results in

@

@t

0
BBBBBB@

p

@p
@a

@p
@b

@
2p

@a@b

1
CCCCCCA

T

=

0
BBBBBB@

p

@p
@a

@p
@b

@
2p

@a@b

1
CCCCCCA

T0
BBBBBB@

Q
@Q
@a

@Q
@b

@
2Q

@a@b

0 Q 0
@Q
@b

0 0 Q
@Q
@a

0 0 0 Q

1
CCCCCCA

: (7)
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Let

Q� =

0
BBBBBB@

Q
@Q
@a

@Q
@b

@
2Q

@a@b

0 Q 0
@Q
@b

0 0 Q
@Q
@a

0 0 0 Q

1
CCCCCCA

;

then the solution to (7) is given by,

0
BBBBBB@

p

@p
@a

@p
@b

@
2p

@a@b

1
CCCCCCA

T

= eT
1
exp (Q�

t):

Computation of mixed derivatives therefore requires considering a matrix ex-

ponential vector operation of dimension four times the order of the original

Q-matrix. For the second derivative, @2p=@a2, a matrix three times the order

of the Q-matrix is required,

Q� =

0
BBB@

Q
@Q
@a

@
2Q

@a2

0 Q 2@Q
@a

0 0 Q

1
CCCA : (8)

For computation of all the �rst and second derivatives with respect to two

parameters a and b, the single extended Q-matrix which allows for computation

of the probability vector together with these derivatives is given by,

Q� =

0
BBBBBBBBBBBB@

Q
@Q
@a

@Q
@b

@
2Q
@a2

@
2Q
@b2

@
2Q

@a@b

0 Q 0 2@Q
@a

0
@Q
@b

0 0 Q 0 2@Q
@b

@Q
@a

0 0 0 Q 0 0

0 0 0 0 Q 0

0 0 0 0 0 Q

1
CCCCCCCCCCCCA

:
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All derivative vectors and the probability vector may then be computed at once

since,

0
BBBBBBBBBBBB@

p

@p
@a

@p
@b

@
2p

@a2

@
2p
@b2

@
2p

@a@b

1
CCCCCCCCCCCCA

T

= eT
1
exp(Q�

t); (9)

where eT
1
= (1 0 : : : 0 0) is the initial vector for the left-hand side of (9). Such

extensions of the Q-matrix may be continued in a natural way to deal with

derivatives with respect to three or more parameters.

However, it may be more economical for large counts to construct a number

of smaller matrices and compute the derivatives required in stages, rather than

computing all of the derivatives at once. A matrix such as (8) may be formed

for each parameter and all �rst derivatives and second derivatives obtained by

successively exponentiating each of these matrices. For computation of mixed

derivatives, a matrix such as (7) may be constructed for each distinct pair of

parameters. Several matrix exponential vector operations will be required, but

the matrices and vectors will be of smaller dimension.

5 Example: Leadbeater's possum counts

To illustrate the method of extending the Q-matrix to allow for computation

of likelihood derivatives, the analysis of some species abundance data by Faddy

(1998) will be re-visited.

The data consist of the numbers of Leadbeater's possums (Gymnobelideus

leadbeateri) sampled over 151 3ha. sites across Central Victoria, Australia, with

10



the main interest being the assessment of signi�cance of covariates describing

various habitat characteristics. The covariates which were measured on each

site and believed to be relevant to the abundance of this species (Welsh et al.,

1996), are given below,

lstags: log
e
(no. of trees with hollows +1),

age: forest age,

baa: basal area of Acacia species on site,

slope: slope of the site,

aspect: aspect of the site

bark: score for degree of decorticating or peeling bark,

no s: score for number of shrubs on the site.

All of these covariates are quantitative with the exception of the aspect covariate

which is a factor variable at four levels.

To allow for the high proportion of zero counts in the data, the transition

rate model introduced earlier in section 2 was used,

�(n) =

8<
:

�0 n = 0

�1 n
c

n � 1;

where �0 and �1 are log-linear functions of the covariates,

�0 = exp(xT�0)

�1 = exp(xT�1):

The extended Q-matrix for such a model, which will allow for the probability

vector and all of its �rst and second derivatives to be computed at once, is given

11



by,

Q� =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

Q
@Q
@�0

@Q
@�1

@Q
@c

@
2Q

@�
2

0

@
2Q

@�
2

1

@
2Q
@c2

@
2Q

@�0@�1

@
2Q

@�0@c

@
2Q

@�1@c

0 Q 0 0 2 @Q
@�0

0 0
@Q
@�1

@Q
@c

0

0 0 Q 0 0 2 @Q
@�1

0
@Q
@�0

0
@Q
@c

0 0 0 Q 0 0 2@Q
@c

0
@Q
@�0

@Q
@�1

0 0 0 0 Q 0 0 0 0 0

0 0 0 0 0 Q 0 0 0 0

0 0 0 0 0 0 Q 0 0 0

0 0 0 0 0 0 0 Q 0 0

0 0 0 0 0 0 0 0 Q 0

0 0 0 0 0 0 0 0 0 Q

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

:

Derivatives with respect to the components of vectors of covariate coe�-

cients, �0 and �1, can be obtained in terms of those of �0 and �1 by applying

the usual chain rule. For example,

@pi

@�0j
=

@pi

@�0

@�0

@�0j

= �0 xj
@pi

@�0
;

where pi is the probability of the ith observation and xj is the jth covariate

value for this observation. Therefore, the actual number of covariates is of

no consequence to the complexity of the proposed scheme. Only those factors

determining the size of the matrix to be exponentiated, namely the number

of parameters used when specifying the n-dependence of the transition rates

(three here) and the size of the counts, will a�ect the computation required.

Given below are the resulting covariate coe�cient estimates, together with

their corresponding asymptotic standard errors computed from the observed

information matrix. The corner point constraint (asp1= 0) has been imposed

for the aspect variable.
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Parameter Parameter

Coef log(�0) s.e. log(�1) s.e.

Const �5:0715 (1:1941) 1:6803 (0:8509)

lstags 0:8902 (0:2500) 0:3890 (0:1973)

age 0:1304 (0:0913) �0:0490 (0:0705)

baa 0:0670 (0:0179) 0:0094 (0:0185)

slope 0:0073 (0:0206) �0:0360 (0:0220)

asp2 0:5117 (0:3952) 0:3788 (0:3551)

asp3 0:2629 (0:4064) 0:2758 (0:4055)

asp4 �0:0967 (0:0333) 0:0021 (0:4601)

bark 0:0634 (0:0333) 0:0392 (0:0246)

no s 0:0101 (0:0437) �0:1486 (0:0447)

The corresponding log-likelihood is `` = �181:3683, and the estimated c

parameter is c = �0:5509 (0:2833). The log-likelihood maximization here was

performed using the `nlminb' routine (derivatives supplied), with matrix ex-

ponentiation carried out in outer fortran routines using the expokit software

package. On the Pentium 300MHz machine the maximization was completed in

under ten seconds, fast enough for interactive modelling. The original compu-

tation described by Faddy (1998) using the simplex search took several hours.

The log-likelihood and its derivatives computed as a part of the maximiza-

tion process can be used to construct tests for model parameters. The log-

likelihood ratio test for c = 0, based on the chi-squared approximation to twice

the change in log-likelihood between the restricted c = 0 and full maximum

likelihood model �ts, returns p-value � 0:0327. An approximate score test for

c = 0, based on

u
T
J
�1

u � �
2

1

evaluated at c = 0, with u being the score vector and J the observed information
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matrix, gives p-value � 0:0448. Both results suggest that the negative value

for c should be retained. Such a negative value indicates the presence of less

dispersion than the c = 0 model can allow for. An approximate Wald test for

c = 0, based on

ĉ

s:e:(ĉ)
� N(0; 1);

where ĉ denotes the maximum likelihood estimate of c, returns p-value� 0:0518.

However the Wald test might be considered less reliable than the two previous

tests in this context because of its lack of invariance under reparameterization.

Comparing regression coe�cients with their corresponding standard errors

in the table above suggests that the signi�cant variables are stags, baa, and

bark for �0, and stags, slope, bark and no s for �1. Forward selection using

score tests, or backward elimination using likelihood ratio tests as in Faddy

(1998), con�rms this selection of signi�cant variables.

6 Conclusion

It has been shown in this paper how probabilities and derivatives used in model

�tting of extended Poisson process models can be computed by exponentiat-

ing an extended Q-matrix of transition rates. Such calculations can be done

using the expokit package (Sidje, 1998) since only a matrix exponential vector

operation is required, and not the entire matrix exponential.

The method makes it practical for extended Poisson process modelling to

be used as an interactive data analysis tool, and gives users access to the full

range of likelihood based inference. S-Plus functions and compiled object code

for Windows which implement the methods described in this paper are available

from http://www.maths.uq.edu.au/�hmp/.
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