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A general method for the analysis of ecological count data with extra zeros is presented
using a Markov birth process representation of discrete distributions. The method uses a
nonparametric formulation of the birth process to model the residual variation and therefore
allows the data to play a greater role in determining an appropriate distribution. This enables
a more critical assessment of covariate effects and more accurate predictions to be made. The
approach is also presented as a useful diagnostic tool for suggesting appropriate parametric
models or verifying standard models. As an illustrative example, data describing abundance
of a species of possum from the montane ash forests of the central highlands of Victoria,
southeast Australia, is considered.
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1. INTRODUCTION
Ecological count data describing the abundance of species frequently contain many

zeros, particularly when the species is rare and endangered. These data usually consist of
the number of sightings of the species in a defined area and measurements of corresponding
habitat variables on that site. Accurate assessment of the significance of each of these habitat
covariates is important to enable effective monitoring and management of the species. If
the significance of covariates is over- or understated, then poorer predictions of the mean
abundance of animals at a site may follow. Therefore, statistical models must take account
of the extra zeros and accurately account for any residual variation.

Standard approaches proceed by adding a probability at zero to truncated standard
distributions such as a Poisson or negative binomial distribution. The resulting models are
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referred to as added zero or extra zero Poisson and negative binomial models, respectively.
More recently, Welsh, Cunningham, Donnelly, and Lindenmayer (1996) used the term
conditional to describe such models. There are also zero-inflated models (Lambert 1992),
which model the response as a mixture of a Bernoulli distribution and a Poisson or negative
binomial distribution.

Recently, Faddy (1998) proposed a new method for the analysis of count data with
extra zeros using a Markov birth process representation of discrete distributions with non-
negative support. These models allow for control of the residual dispersion as covariates
are incorporated into the model and therefore allow for a more critical assessment of their
effects. The appropriate distribution describing the residual variation was determined using
a parametric formulation. In this article, we extend this approach by using penalized like-
lihood to estimate an appropriate formulation nonparametrically, thereby allowing the data
to play a greater role in describing the residual distribution. The resulting models can be
used in their own right for assessing covariate effects and making predictions or as a useful
exploratory tool for suggesting parametric formulations such as that proposed in Faddy
(1998).

In Section 2, the model framework will be described, and in Section 3, model fitting
is discussed. The approach will then be applied to some data describing abundance of the
Leadbeater’s possum species in Victoria, Australia, in Section 4. Comparisons with results
obtained from the completely parametric approach of Faddy (1998) and the more usual
extra zeros models will be of interest.

2. MODELING
The model framework arises from noting that any distribution {pn, n = 0, 1, . . . , i} can

be represented as the distribution of a Markov birth process {X(t), t ≥ 0} with X(0) =
0 and transition rates {λn, n = 0, 1, . . . , i} at some arbitrary time, t = 1 say. Such a
representation is unique (Faddy 1997), i.e., there is a one-to-one relationship between a
distribution and transition rate sequence satisfying the system of differential equations
(Cox and Miller 1965, chap. 4)

p0
′(t) = −λ0p0(t) with p0(0) = 1

pn
′(t) = −λnpn(t) + λn−1pn−1(t) with pn(0) = 0, n = 1, . . . , i. (2.1)

The underlying birth process is an extension of the simple Poisson process for which events
occur at a constant rate λn = λ. Therefore, distributions or models constructed from
transition rates that depend on n, the number of accumulating events, can be referred to as
extended Poisson process models (EPPMs).

This construction can be easily modified to allow for an excess of zero counts. From
the solution to (2.1), note that p0(t) = e−λ0t, where we take t = 1 without any loss of
generality. The probability at zero is therefore determined from the value of λ0, and extra
zeros could be accommodated by modeling the transition rate at n = 0 separately from the
other transition rates. The resulting models thus have more similarities with the extra zeros
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Poisson and negative binomial models than Lambert’s zero-inflated models.
Suppose the ith observation, yi, is observed with corresponding vector of covariates

xT
i . Let λi(n), n = 0, 1, . . . , yi, denote the transition rate sequence that determines pyi .

Then the proposed model for the transition rates is of the form

λi(n) =
{

λi0 n = 0
λi1h(n) n ≥ 1,

(2.2)

where λi0, λi1 > 0 and h(n) is to be estimated nonparametrically from the data. To allow
for the assessment of covariate effects, the parameters λi0 and λi1 in (2.2) can be modeled
as log-linear functions of the covariates,

λi0 = exp(xT
i β0)

λi1 = exp(xT
i β1).

For ease of notation in discussions that follow, we drop the ith case dependence and refer
to these parameters as λ0 and λ1. When these parameters are modeled as functions of
covariates, we use the term semiparametric to describe such a model since the covariate
effects are parametric; however, the distributional form is to be estimated nonparametrically.
Also note, from p0 = e−λ0 and with a log-linear form for λ0, these extra zeros models
correspond to the use of a complementary log-log link for 1 − p0.

It is the form of h(n) in (2.2), referred to as the n-dependence form, that determines
the dispersion properties of the model. For example, λ0 = λ1h(1) and h(n) constant
corresponds to the ordinary Poisson model, while λ0 = λ1[2h(1) − h(2)] and h(n) linear
increasing corresponds to the negative binomial model. Therefore, a model with λ0 <

λ1h(1) and h(n) constant has similarities with an extra zeros Poisson model, while h(n)
linear increasing and λ0 < λ1[2h(1) − h(2)] has similarities with an extra zeros negative
binomial model. Numerical experiments suggest that a model with h(n) decreasing allows
for less variation than one with h(n) constant. Also, a model with h(n) concave increasing
allows for variation between h(n) constant and linear increasing, while a convex increasing
h(n) allows for more variation than the linear increasing case. For example, Figure 1
shows probability distributions corresponding to h(n) decreasing (–), constant (-·-), concave
increasing (· · ·), linear increasing, (- - -) and convex increasing (-· · ·-). Although the mean is
the same for each probability distribution (as is the probability of zero), increasing variation
is apparent from h(n) decreasing to h(n) convex increasing. Hence, different forms for h(n)
will result in different distributions for the residual dispersion, allowing models applicable
to a broad range of extra zeros data. Further, because we do not assume any particular form
for h(n), the data are allowed to determine an appropriate functional form.

Faddy (1998) assumed h(n) took the particular form

h(n) = nc c ≤ 1. (2.3)

The models (2.3) provide a flexible class of monotonic relations for the n-dependence: c = 0
constant, c = 1 linear increasing, 0 < c < 1 concave increasing, and c < 0 decreasing.
[Unfortunately, this model does not admit c > 1 because a dishonest distribution results (see
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Figure 1. Probability Distributions With Equal Mean and Probability of Zero for Various h(n).

Faddy 1997).] The more general approach here would provide a useful diagnostic tool for
investigating the appropriateness of such monotonic forms. Also, by smoothing the entire
sequence h(n) for n ≥ 0, the need for modeling the zero probability separately as in (2.2)
can be investigated.

The method proposed for nonparametrically estimating the n-dependence form, h(n),
is based on the roughness penalty approach (see Green and Silverman 1994). Here a set
of knots are defined over the range of nonzero data, and the values of the function h(·) at
these knots are computed by maximizing an adjusted log-likelihood function, known as a
penalized log-likelihood, that penalizes rough forms for h(n).

Let h = (h1 h2 · · · hq) denote the values of the function h(·) at the q knots. Also
let y denote the data vector with elements yi and β = (β0,β1), the vector of covariate
coefficients for the zero and nonzero counts, respectively. Then the penalized log-likelihood
function,

�p(y | β,h) = �(β,h | y) − αP (h), α > 0, (2.4)

is maximized over β and h, where �(β,h | y) = Σi log(pyi) denotes the ordinary log-
likelihood, P (h) is a penalty function measuring the roughness of the n-dependent form h,
and α is a smoothing parameter. The smoothing parameter controls the trade-off between
goodness of fit, as measured by the log-likelihood, and smoothness of the n-dependent
form, as measured by the roughness penalty. The larger the value for α, the smoother the
form for h(n).

We propose the use of a penalty function that takes account of the discrete nature of
our smoothing problem,

P (h) =
q−1∑
j=2

(hj−1 − 2hj + hj+1)2 + γ

q∑
j=2

(hj − hj−1)2, γ > 0,
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i.e., the penalty function comprises the summed second differences squared and some
multiple of the summed first differences squared. We choose γ small (e.g., 10−4), resulting in
a zero penalty when the function h(·) is constant, so that the limiting α → ∞ n-dependence
form will be this constant form using a single degree of freedom.

Selection of an appropriate smoothing parameter value, α, can be made by displaying
h(n) graphically for a range of smoothing parameters and visually comparing the forms
obtained in relation to the log-likelihoods. Such a subjective approach to selection of α is
often applied and avoids the need to estimate the equivalent degrees of freedom for the
nonparametric form.

3. MODEL FITTING
To form the log-likelihood, �(β,h | y) in (2.4), probabilities pyi

are computed by
solving the Chapman–Kolmogorov system of differential equations (2.1) given in Section
2. The solution for each observation yi can be expressed in terms of the matrix exponential
of the Q-matrix of transition rates,

Q =




−λ(0) λ(0) 0 · · · 0 0
0 −λ(1) λ(1) · · · 0 0
...

...
...

...
...

0 0 0 · · · −λ(yi − 1) λ(yi − 1)
0 0 0 · · · 0 −λ(yi)




,

with pyi
, the probability of obtaining the count yi, being the last element of the probability

vector satisfying

(p0 p1 · · · pyi−1 pyi) = (1 0 · · · 0 0) exp(Q). (3.1)

The matrix-exponential vector operation (3.1) can be performed, for example, using the
software developed by Sidje (1998). In Podlich, Faddy, and Smyth (1999), it is shown how
derivatives of the log-likelihood can also be computed by extending the Q-matrix. These
are not only useful for iterative maximization of the log-likelihood function but they also
enable the computation of asymptotic standard errors of parameter estimates and therefore
routine application of inferential techniques such as Wald tests. However, for large counts
or large numbers of parameters, computation can become expensive since the size of the
matrix to be exponentiated is large. In this situation, probabilities and derivatives can be
computed from a saddlepoint approximation (Daniels 1982),

p̂yi
=

yi−1∏
j=0

λ(j)e−θ̃

yi∏
j=0

(λ(j) − θ̃)


2π

yi∑
j=0

1

(λ(j) − θ̃)2




1/2

{
1 +

1
8
ρ4 − 5

24
ρ2

3

}
,



6 H. M. PODLICH, M. J. FADDY, AND G. K. SMYTH

with θ̃ satisfying

1 =
yi∑

j=0

1

λ(j) − θ̃

and with

ρr =

(r − 1)!
yi∑

j=0

1

(λ(j) − θ̃)r




yi∑
j=0

1

(λ(j) − θ̃)2




r/2
.

All computations involving nonparametric estimation are only exact for zero counts,
with the saddlepoint approximation being used to compute probabilities and derivatives for
the nonzero counts. Software for these purposes has been developed in the popular statistical
package S-Plus and is available from http://www.maths.uq.edu.au/∼hmp/.

4. LEADBEATER’S POSSUM DATA
As an illustrative example of the semiparametric approach, we revisit the data consid-

ered in Faddy (1998).
The data consist of the numbers of Leadbeater’s possums (Gymnobelideus leadbeateri)

observed in a sample of 151 three-hectare sites across Central Victoria, Australia. Covariates
describing various habitat characteristics were measured on each site. Those believed to be
relevant to the abundance of this species (Welsh et al. 1996) are

lstags loge(no. of trees with hollows + 1),
age forest age,
baa basal area of Acacia species on site,

slope slope of the site,
aspect aspect of the site (SW-NW, NW-NE, NE-SE, SE-SW)

bark score for degree of decorticating or peeling bark,
shrubs number of shrubs on the site.

All of these covariates are quantitative with the exception of the aspect covariate, which
is a factor variable at four levels. Variables such as lstags, baa, and bark are believed to be
important because they are directly related to the possums’ survival, corresponding to the
possums’ shelter (hollow logs) and food source (grubs, etc., living in trees and bark).

Table 1 gives the actual frequencies of observed counts of Leadbeater’s possums sam-
pled over the 151 sites. Note the high proportion of zeros, with over 60% of the data in this
category.

From the above frequency distribution, we are able to construct the empirical sequence
of λ̂’s that is the transition rate sequence giving rise to the observed distribution of counts.
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Table 1. Frequencies of Leadbeater’s Possum Counts

n 0 1 2 3 4 5 6 7 8 9 10
freqn 95 9 10 12 8 9 0 4 1 1 2

This can be constructed by taking λ̂(0) = − log(p̂0) = − log(95/151) and successively
solving numerically for λ̂(n + 1), n = 0, 1, . . . , 9, using the matrix-exponential vector
operation (3.1). The resulting sequence is shown in Figure 2 with ±standard errors indicated
by the bars. The value for λ̂(6) is infinite since there were no observed counts of 6 and is
therefore not shown, while the value for λ̂(10) is exactly zero as 10 represents the maximum
count. Note the increase in the transition rates from n = 0 to n = 1, reflecting the large
number of zeros, and it appears that the rates are fairly constant thereafter.

It is possible to apply our methodology to smooth these empirical rates and, through
the Q-matrix exponential, estimate the observed frequency distribution. However, because
we are mainly interested in the model with covariate effects, we do not present these results
in detail but simply note that they do suggest that a constant rate sequence over n ≥ 1
would be appropriate. On introducing covariates into the model, we might expect to see a
decreasing transition rate sequence, as there would be less residual dispersion relative to
the model with no covariates.

Figure 3 shows the fitted smoothed n-dependent forms, h(n), obtained for various
values of the smoothing parameter α when all of the covariate effects are included in the
model. Knots have been defined at each integer between n = 1 and n = 10, the maximum
count, and the penalized log-likelihood maximized over the values of h(n) at these knots as
well as the covariate parameters. Placing a knot at every integer up to the maximum count
may be computationally prohibitive if much larger counts are present. In this situation, a
smaller number of knots can be defined over the range of the data and the ‘in between’
values of h(n) determined using a cubic spline interpolant.

The plots in Figure 3 do indeed show decreasing sequences of h(n) for n ≥ 1 as the
smoothing parameter gets larger, with the bump in the transition rates from n = 5 to n = 6
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Figure 2. Empirical Transition Rate Sequence (Leadbeater’s Possum Counts).
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Figure 3. Nonparametric n-Dependent Form With Covariate Effects (Leadbeater’s Possum Counts).

at smaller values of α a result of the frequency of the count of 6 being zero. On comparing the
n-dependent forms and log-likelihoods obtained from the range of smoothing parameter
values, we are led to choose a linear decreasing form for h(n) since the approximate
linear decreasing form (α = 100) represents a marginally significant improvement in log-
likelihood over the constant (α = 104) form for the extra 1 d.f. (2 × ∆� = 2.90), but
smaller values of α do not represent any worthwhile improvements in log-likelihood for
the increase in complexity of the n-dependent forms. An exact linear decreasing form can
be obtained by taking α = 105 and γ = 0, giving �p = � = −185.64, since linear h(n)
results in the summed second differences squared in the penalty being zero.

To assess the significance of the habitat variables, those covariate coefficients with
standard errors exceeding or close to the estimate were removed from the model. Standard
errors can be computed using the Fisher information matrix from the ordinary log-likelihood
without the penalty component. The bark covariate effects in λ0 and λ1 were then marginally
significant on their own; however, the change in log-likelihoods on removing both suggests
that they should be retained (2 × ∆� = 6.97).

The estimates obtained for h(n) with this reduced set of covariates do not change
greatly from those in Figure 3 since the residual variation has not greatly changed when
only the significant covariates are retained. The significant covariate effect estimates and
their asymptotic standard errors from this model fit are given in Table 2.
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Table 2. Significant Covariate Effect Estimates and Their Asymptotic Standard Errors

Coef Est. (SE)

lstags0 0.6614 (.2012)
baa0 0.0743 (.0172)
bark0 0.0502 (.0314)
lstags1 0.3776 (.1139)
slope1 −0.0441 (.0152)
bark1 0.0329 (.0184)
shrubs1 −0.1303 (.0377)

The resulting model can be used to make predictions of abundances given a set of
habitat characteristics. Calculation of predicted values requires extrapolating the form for
h(n) beyond the data range, where there is no information to construct any estimates.
Here we will simply take the transition rates to be constant beyond the range of the data.
Means are then computed directly from the probability distribution (3.1) for suitably large
yi corresponding to the fitted transition rate sequence since no explicit expression for means
is available. Standard errors for these predictions can be computed using the delta method.

Figure 4 shows estimated mean abundances and ±standard errors computed as a func-
tion of the most significant habitat variable stags, the number of trees with hollows. We
have chosen the other values for the habitat characteristics from the data, one at a low value
of the bark covariate and the other at a high value of the bark covariate. Comparisons are
made here between estimates obtained from the chosen semiparametric model, the para-
metric model proposed in Faddy (1998), and the extra zeros Poisson model proposed in
Welsh et al. (1996).

Our estimates are in good agreement with those from Faddy (1998), with the predic-
tions from the parametric and semiparametric models almost indistinguishable in Figure 4.
The analysis here therefore supports the parametric form used in Faddy (1998) and in par-
ticular verifies the assumption of monotonic n-dependence for n ≥ 1. For other values of the
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Figure 4. Predicted Abundances and ±Standard Errors.
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Figure 5. Predicted Abundances and ±Standard Errors.

smoothing parameter, α, the size of the standard errors in relation to the predictions becomes
smaller as α decreases, reflecting the reduction in residual dispersion. Here, since the smaller
positive values for α give a similar n-dependent form and log-likelihood to the linear
decreasing form chosen above, the resulting predictions and standard errors are also similar.
However, the constant n-dependent form results in slightly smaller predictions and larger
standard errors relative to those shown.

Compared with the predictions from the extended Poisson process models in Figure 4,
the extra zeros Poisson model tends to overestimate the abundances at the low value of the
bark covariate and underestimate the abundance at the high value of the bark covariate.
This latter model, using a logistic link for the probability at zero, resulted in a maximum
log-likelihood � = −187.80, with the bark covariate only included in the model for the
equivalent of λ1. If a complementary log-log link for the probability at zero is used instead,
a lower log-likelihood of � = −185.65 results, with the bark covariate effect for the
equivalent of λ0 now significant. Mean abundances and standard errors, shown in Figure
5, suggest predictions are now in closer agreement with the results from the extra zeros
extended Poisson process models with similar covariate assessment.

5. CONCLUSION
The models proposed in this article offer a flexible framework for the analysis of count

data with extra zeros, which frequently arise in studies of species abundance. It is the
nonparametric formulation that allows the data to guide the appropriate model choice and
therefore make for more reliable covariate assessment and model predictions. Although
more standard extra zeros models are not explicitly special cases of those developed here,
models with similar dispersion properties can be constructed. It is the greater generality of
the modeling framework developed here that justifies this approach.

The use of the approach as an exploratory tool is particularly appealing. Through
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graphical model selection, it is possible to obtain a good feel for whether there is a need to
account for extra zeros in the first instance and then what model might be appropriate for
a particular data set. This graphical analysis may serve to justify the use of a completely
parametric model specification such as the flexible monotonic parametric forms of Faddy
(1998) or more standard extra zeros models.
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