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Abstract

Variations from Poisson and binomial variation are a
common concern when modeling count data. Tests for
overdispersion are often based on unrealistically spe-
cific alternatives, such as the negative binomial or beta-
binomial distributions, or are not model based and there-
fore lack power. Convincing methods for detecting and
modeling underdispersion are not generally available.
We use extended Poisson process models, in which an
arbitrary count distribution can be represented as the
realization of a pure birth process. Under and overdis-
persion relative to the Poisson or binomial distributions
can be represented in terms of the slope and curvature
of the unobserved birth rate sequence. We give a new
saddlepoint approximation for birth processes which is
exact in the neighborhood of the Poisson, negative bi-
nomial and binomial models. This allows us to compute
score tests for the goodness of fit of standard models
against very general alternatives.

Keywords: score test, saddlepoint approximation, birth
process, Poisson distribution, negative binomial distri-
bution, binomial distribution.

1 Introduction

Non-Poisson variation is a common problem when mod-
eling count data. The particular problem of overdisper-
sion has received the majority of the attention in the lit-
erature. However underdispersion and skewness relative
to the Poisson distribution are also common and need to
be detected for accurate modeling and for interpreting
the process at hand.

The negative binomial distribution is a particularly
popular alternative to the Poisson when overdispersion is
the primary concern. Several authors, including Collings

*Smyth, G. K., and Podlich, H. M. (2000). Score tests for
Poisson variation against general alternatives. Computing Science
and Statistics, 32, 97-103.

and Margolin (1985), Lee (1986), Cameron and Trivedi
(1986) and Dean and Lawless (1989), have derived the
likelihood score test of Poisson variation against a neg-
ative binomial alternative. These authors used the
method of Cox (1983) and Chesher (1984) to show that
the score test with negative binomial alternative is also a
score test against other mixed Poisson alternatives. The
mixed Poisson models have in common a variance func-
tion of the form

var(Yi|xi) = µi + γµ2
i

where xi is a covariate vector and µi = E(Yi|xi). The
score test with negative binomial alternative is therefore
locally optimal against deviations from Poisson variation
with this sort of variance function.

In order to construct tests of Poisson variation against
more general alternatives it is necessary to have a conve-
nient representation for possible alternatives. In this pa-
per we use the birth rate sequence of an unobserved birth
process to represent an arbitrary count distribution, the
distribution arising as the number of births after unit
time (Faddy, 1997). In terms of the birth rates, Pois-
son variation corresponds to a constant sequence while
the negative binomial distribution corresponds to a lin-
ear increasing sequence. A linear decreasing birth rate
sequence corresponds to the binomial distribution. We
compute the score test for linear trend in the birth rates
and show that this test is identical to the test with neg-
ative binomial alternative. It follows that this test can
be used to detect underdispersion in the direction of the
binomial distribution as well as overdispersion in the di-
rection of the negative binomial distribution.

We derive a second score test corresponding to
quadratic departures from Poisson variation. This test
supplements the linear test and is sensitive to skewness
relative to the Poisson distribution. The two score tests
together provide a practical approximation to the score
test of Poisson variation against a very general class of
alternative distributions.

In order to compute the score tests, we use a new
saddlepoint approximation to the count probabilities of
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Figure 1: Frequency distribution of fetal implants in
mice utero with fitted Poisson distribution overlaid.

a birth process. The new approximation is more accu-
rate than the classic saddlepoint approximation due to
Daniels (1982) and has the characteristic that it is exact
in the neighborhood of the Poisson, binomial and nega-
tive binomial distributions. The means that score tests
for Poisson variation computed from the saddlepoint ap-
proximation are exact likelihood score tests.

The distribution of the score test with negative bi-
nomial alternative is known to converge to normality
quite slowly. In small or moderate sized samples the test
statistic has a distribution which is both right skew and
heavy tailed. We find that the second score test with
quadratic alternative is less skew in distribution than
the first but more heavy tailed. In this paper we mod-
ify both score test statistics using the leverages of the
fitted Poisson model to account for uncertainty in esti-
mating the model parameters and so that they converge
to normality more rapidly. We compute approximate 3rd
and 4th cumulants for the test statistics and incorporate
these into an Edgeworth expansion (Barndorff-Nielsen
and Cox, 1989) to approximate the significance levels of
the test statistics.

2 Birth Process Representation
of Count Distributions

Consider a general birth process with birth rates λn ≥ 0,
n = 0, 1, 2, . . .. Let y(t) be the number of births after
time t. Then y(t) is an extended Poisson process for
which the arrival rate depends on the number of arrivals
so far. Let pn(t) be the probability function for y(t).
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Figure 2: Fetal implants in mice: empirical birth rate
profile and smoothed rate profile.

The extended Poisson process can be defined by

P (y(t+ δt) = n | y(t) = n) = 1− λnδt+ o(δt)

P (y(t+ δt) = n+ 1 | y(t) = n) = λnδt+ o(δt).

Write pn = pn(1) for the count distribution arising after
unit time.

Any birth rate sequence λn, n ≥ 0, gives rise to a
unique count distribution pn. It can also be shown that
for any count distribution pn, n = 0, 1, 2, . . ., there is a
corresponding birth rate sequence λn, n = 0, 1, 2, . . ., al-
lowing λn to be infinite if pn = 0. For example Figure 1
shows a histogram of the number of fetal implants found
in the utero of pregnant mice and Figure 2 shows the
birth rates corresponding to the observed relative fre-
quencies. (Data courtesy of Ron Bosch of the Harvard
School of Public Health.) The upward pointing arrow in
Figure 2 indicates an infinite value. In this case λ0 = ∞
because there were no mice with zero implants.

The λn are uniquely determined by the pn for all n
within the support of pn. It follows that sequences λn

provide a representation for the class of count distribu-
tions on the non-negative integers. This representation
has advantages over the probability representation in
that the λn are not constrained to add to one and in
that, as we will see, linearity in the λn corresponds to
well-known standard distributions. In general it makes
sense to consider smooth sequences for the λn such as
splines or low order polynomials. Figure 2 also shows
the birth rates for the fetal implants in mice smoothed
using a technique described in Podlich et al (1999) and
Figure 3 gives the probability function corresponding to
the smoothed birth rates.
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Figure 3: Fetal implants in mice: the solid line gives the
probabilities obtained from the smoothed rate profile.

A constant sequence λn = λ corresponds to the Pois-
son distribution with mean λ. A linear increasing se-
quence gives rise to a negative binomial distribution.
Specifically if λn = a(b + n) then y(t) ∼ Neg Bin(b, 1 −
e−a). A linear decreasing sequence, intersecting the λ-
axis at a positive integer, give rise to a binomial dis-
tribution. Ball (1995) showed that any monotonic in-
creasing sequence corresponds to a distribution which
is overdispersed relative to the Poisson and any mono-
tonic decreasing sequence to a distribution which is un-
derdispersed relative to the Poisson. In general, increas-
ing slope corresponds to increasing variance for a given
mean, while convex or concave curvature corresponds to
right or left skewness relative to the linear sequence with
the same mean and variance.

Figure 4 illustrates some birth rate sequences cor-
responding to standard distributional types. Horizon-
tal and increasing lines correspond to the Poisson and
negative binomial distributions respectively. The low-
est curve is underdispersed relative to the Poisson but is
more right skew than the binomial with the same mean
and variance. The first curve above the horizontal is
overdispersed relative to the Poisson but is less right
skew than the negative binomial with the same mean
and variance. The top curve will represent a proper dis-
tribution provided it is asymptotically linear. It will be
more right skew than the negative binomial with the
same mean and variance.

λ

n

Poisson

(n)
Negative binomial

Figure 4: Classification of count distributions based on
their birth rate sequences.

3 Regression Models for Count
Data

We suppose independent observations y1, . . . , yN , where
each yi is a non-negative integer, and where the means
µi are a function of covariate vectors xi and a vector of
regression coefficients β.

Consider the distribution of an arbitrary y with mean
µ. We assume that the distribution of y is described by
the birth rate sequence

λn = γ0{1 + h(n)}

where h(n) is some function of n and γ0 is determined
by the constraint that the mean of the distribution is µ.
We assume that h(n) is common to all observations but
that µ (and hence γ0) varies depending on the covariates
and the regression coefficients β.

The function h(n) determines the shape of the re-
sponse distribution. In particular the slope of h(n) de-
termines the dispersion of the yi relative to the Pois-
son distribution while the curvature of h(n) determines
skewness and higher order properties of the distribution.
Example 1. Poisson. If h(n) = 0 for all n then y has a
Poisson distribution with mean µ and γ0 = µ.
Example 2. Negative binomial. If h(n) = γ1n with γ1 >



0 then y has a negative binomial distribution with

E(y) = µ =
1

γ1
(eγ0γ1 − 1)

and

var(y) = µ+ γ1µ
2.

It follows that

γ0 =
1

γ1
log(1 + γ1µ).

Note that γ0 → µ as γ1 → 0.
Example 3. Binomial. If h(n) = −n/m with m a
positive integer then y has a binomial distribution on
0, . . . ,m. In this case

var(y) = µ− µ2/m

and

γ0 = −m log(1− µ/m).

Example 4. Concave overdispersion and convex under-
dispersion. Suppose that h(n) = nα. If 0 < α < 1 then
the distribution of y is intermediate between Poisson and
negative binomial. The distribution has variance and all
higher cumulants greater than its mean but has third
and higher cumulants smaller than the negative bino-
mial with the same mean and variance. If −1 < α < 0
then the distribution of y is intermediate between Pois-
son and binomial. The distribution has variance and
higher cumulants smaller than its mean but has third
and higher cumulants greater than the binomial with
the same mean and variance.
Example 4. Unimodal birth rate sequences. If h(n) has
a single maxima, i.e., is monotonic increasing for n <
m and monotonic decreasing for n > m for some m,
then the distribution of y is left skew relative to Poisson
and to the negative binomial or binomial with the same
mean and variance. The distribution may be over or
underdispersed relative to Poisson. If h(n) has a single
minima then the distribution is right skew relative to the
distributions with linear sequences.
Example 5. Mixed Poisson models. Consider the count
distribution arising from a mixing distribution on the
Poisson mean. The mixture distribution is overdispersed
relative to Poisson and the corresponding sequence h(n)
is monotonic increasing. If the mixing distribution is
gamma then the mixture is negative binomial and the
corresponding h(n) is linear increasing. Numerical ex-
periments confirm that if the mixing distribution is less
right skew than the gamma then h(n) is concave increas-
ing, and if the mixing distribution is more right skew
than the gamma then h(n) is convex increasing.

4 Locally Exact Saddlepoint Ap-
proximation

Consider a pure birth process with birth rates
λ0, λ1, λ2, . . .. The following saddlepoint approximation
is used for the probability distribution of the birth dis-
tribution after unit time:

pn ≈ e−a

n!
g(b)n

n∏
i=0

(a+ bi) (1)

where

g(b) =

{
1 b = 0
(1− e−b)/b b ̸= 0

where a and b ≥ 0 satisfy

n∑
i=0

1

a+ bi
= 1

and
n∑

i=0

1

(a+ bi)2
=

n∑
i=0

1

(λi − θ̃)2

and θ̃ satisfies
n∑

i=0

1

λi − θ̃
= 1.

In practice we compute

g(b) =

{
1− b/2 + b2/6 if b < 10−5

(1− e−b)/b if b ≥ 10−5

The approximation (1) becomes exact as the λi ap-
proach a linear sequence or can be sorted into a linear se-
quence. In particular the approximation becomes exact
as the count distribution approaches Poisson, negative
binomial or binomial. See Smyth and Podlich (1999) for
a derivation of (1).

5 Score Tests for non-Poisson
Variation

We now construct a 2-df score test for non-Poisson vari-
ation. We assume a quadratic polynomial model for the
birth rate sequence,

h(n) = γ1n+ γ2n
2 (2)

over the range 0, . . . ,max(yi). This provides a 2-df ap-
proximation to the birth rate sequence for a wide range
of distributions. Here γ1 = γ2 = 0 corresponds to the
Poisson distribution; γ1 > 0 represents overdispersion
relative to the Poisson distribution in the direction of



the negative binomial distribution; γ1 < 0 represents
underdispersion relative to the Poisson distribution in
the direction of the binomial distribution; γ2 ̸= 0 repre-
sents more general departures from the Poisson distribu-
tion. In particular γ2 > 0 is associated with distributions
which are more right skew than the Poisson distribution
and γ2 < 0 is associated with distributions which are less
right skew than the Poisson. Note that the sequence h(n)
with γ0 > 0 would represent in an improper distribution
if extended to n → ∞ but we need to approximate the
true birth rate sequence only up to max(yi) for model-
ing the data at hand. Similarly γ2 < 0 would result in
a distribution with finite support if extended to n large
enough that h(n) ≤ 0; we need only that h(n) > 0 for
n = max(yi)− 1.

We construct the score test of γ1 = γ2 = 0 which
requires derivatives of py with respect to the γj . Calcu-
lation of these derivatives is complicated by the indirect
definitions of a, b, θ̃ and γ0 in the expression for py.
However the simple form (2) makes it possible to obtain
closed form expressions for the derivatives when evalu-
ating at γ1 = γ2 = 0.

After considerable calculation we obtain

U1 =
∂ log py
∂γ1

∣∣∣∣
γ1=γ2=0

=
(y − µ)2

2
− y

2

and

U2 =
∂ log py
∂γ2

∣∣∣∣
γ1=γ2=0

=

(y − 1)y(2y − 1)

6
− µy(2y + 1)

6
−
(
µ2

3
+

µ

2

)
(y − µ).

The fact that the saddlepoint approximation is exact
at the Poisson limit ensures that these derivatives hold
all the properties of score statistics such as E(U1) =
E(U2) = 0 when y ∼ Poisson(µ).

These score statistics are correlated so we further
compute the orthogonal quadratic statistic

U2.1 = U2 − U1cov(U1, U2)/var(U1).

Write

mr = (y − µ)r − µ, r = 1, 2, 3

for the first three mean corrected moments. Note that
E(mr) = 0. We have

U1 = m2/2−m1/2

and
U2.1 = m3/3−m2 + (2/3− µ)m1.

Now
var(U1) = µ2/2

and

var(U2.1) = 2µ3/3

so standardized test statistics are

T1 =

∑N
i=1 m̂i,2 − m̂i,1(
2
∑N

i=1 µ̂
2
i

)1/2

and

T2 =

∑N
i=1 m̂i,3/3− m̂i,2 + (2/3− µ̂i)m̂i,1{

(2/3)
∑N

i=1 µ̂
3
i

}1/2
.

T1 is well known as the score statistic for testing Poisson
variation against a negative binomial alternative. Here
it appears as the score statistic for testing for non-zero
slope in the birth rate representation of the response
distribution. This shows that T1 is appropriate also for
testing for underdispersion as represented by the bino-
mial distribution. T2 is a new statistic involving the third
corrected moment of the distribution.

6 Adjusting for Estimation of the
Mean

The fact that the µi must be estimated from the data
means that the corrected moments m̂2 and m̂3 will have
expectations less than zero. Dean and Lawless (1989)
give an adjusted version of T1 in which a leverage term
is added to the numerator. We prefer to divide the m̂r

by an appropriate leverage factor because this adjusts
the higher moments of m̂r as well as the mean.

We assume a link-linear mean model as for a Poisson
generalized linear model,

g(µi) = xT
i β

Let hi be the leverages from the Poisson regression
model, the diagonal elements of the hat matrix

H = W 1/2X(XTWX)−1XTW 1/2

where X is the design matrix with rows xT
i and W is

the diagonal matrix of working weights for the Poisson
regression. Then

E
{
(yi − µ̂i)

2
}
= (1− hi)µi +O(n−3/2).

We define adjusted corrected moments

m̂a
i,r =

(
yi − µ̂i√
1− hi

)r

− µ̂i, r = 1, 2, 3



and adjusted statistics

T a
1 =

∑N
i=1 m̂

a
i,2 − m̂a

i,1(
2
∑N

i=1 µ̂
2
i

)1/2

and

T a
2 =

∑N
i=1 m̂

a
i,3/3− m̂a

i,2 + (2/3− µ̂i)m̂
a
i,1{

(2/3)
∑N

i=1 µ̂
3
i

}1/2
.

We find that the moments of the adjusted statistics
match the nominal moments computed assuming true
means much more closely that do those of T1 and T2.

7 Edgeworth Expansions

Let T be the observed value for T a
1 or T a

2 . The statis-
tics T a

1 or T a
2 are asymptotically standard normal so the

quantile for the observed value is approximately Φ(T )
where Φ() is the standard normal cumulative distribu-
tion.

A higher order approximation to the quantiles can be
obtained from an Edgeworth expansion. The third and
4th cumulants for U1 and U2.1 can be computed using
y ∼ Poisson(µ) to be as follows

U1 U2.1

κ3
µ2

2 + µ3 4µ3

3 + 8µ4

κ4
µ2

2 + 9µ3 + 3µ4 8µ3

3 + 136µ4 + 332µ5 + 40µ6

We estimate the 3rd and 4th standardized cumulants to
be

ρ31 =

∑N
i=1 µ̂

2
i /2 + µ̂3

i(∑N
i=1 µ̂

2
i /2

)3/2

and

ρ41 =

∑N
i=1 µ̂

2
i /2 + 9µ̂3

i + 3µ̂4
i(∑N

i=1 µ̂
2
i /2

)2

for T a
1 and

ρ32 =

∑N
i=1 4µ̂

3
i /3 + 8µ̂4

i(∑N
i=1 µ̂

2
i /2

)3/2

and

ρ42 =

∑N
i=1 8µ̂

3
i /3 + 136µ̂4

i + 332µ̂5
i + 40µ̂6

i(∑N
i=1 µ̂

2
i /2

)2

Test Lower Upper
T a
1 0.0076 0.0436

T a
2 0.0294 0.0272

T a
1
2 + T a

2
2 0.0000 0.0638

T a
1 Edg 0.0290 0.0262

T a
2 Edg 0.1180 0.1270

Pearson 0.0316 0.0186
Deviance 0.0290 0.0218

Table 1: Upper and lower tail rejection rates for simu-
lated Poisson data. The nominal upper and lower rates
are 0.025 except for T a

1
2 + T a

2
2 for which the upper rate

is 0.05 and the lower zero.

for T a
2 . Finally we estimate the quantiles as

Φ(T )− ϕ(T )

{
ρ3jH2(T )

6
+

ρ4jH3(T )

24
+

ρ23jH5(T )

72

}
where j = 1, 2, ϕ() is the standard normal density func-
tion and H2(), H3() and H5() are the Hermite polyno-
mials of orders 2, 3 and 5 (Barndorff-Nielsen and Cox,
1989).

8 Simulations

5000 data sets were simulated in order the check the null
distributions of the test statistics. Data sets were of size
N = 50 and were generated to be Poisson distributed
with means

µi = exp(β0 + β1xi)

where the xi were equally spaced between 2 and 5 and
β0 = 0 and β1 = 1. Estimated values for β0 and β1 were
obtained from Poisson regression for each data set.

Results are given in Table 1. The first two rows of
the table give the proportion of cases for which T a

1 and
T a
2 exceeded 1.96 (upper tail) or fell below −1.96 (lower

tail). These give the size of the tests treating T a
1 and T a

2

as standard normal. The 3rd row gives the proportion of
cases for which T a

1
2+T a

2
2 exceeded the upper 0.05 values

of the chisquared distribution on 2 df. The lower tail rate
is by definition zero in this case. The 4th and 5th rows
give rejection rates based on P -values computed from
the Edgeworth expansion using 3rd and 4th moments for
T a
1 and T a

2 . The last two rows give the rejection rates
for the Pearson goodness of fit statistic and the residual
deviance, treating each as chisquare on 48 df.

We see that T a
1 is rather right skew but is well cor-

rected by the Edgeworth expansion. The Edgeworth ex-
pansion for T a

2 is not successful, but T a
2 holds its nom-

inal size well as a standard normal statistic. All the



other statistics hold their nominal size well although the
Pearson statistic is somewhat skew to the left.

9 Data Example

We return to the distribution of fetal implants in mice.
The Pearson goodness of fit statistic is 598.6 on 697 df
while the residual deviance is 715.8 on 697 df. The Pear-
son statistic suggests some evidence of underdispersion
while the deviance statistic does not. Recalling that the
Pearson statistic is somewhat left skew, it is not clear
from these statistics whether the data can be treated as
Poisson or not.

On computing the score statistics we find T a
1 = −2.64

confirming that the distribution is underdispersed. More
striking though is T a

2 = −10.2 showing that the distri-
bution is strongly left skew relative to the Poisson. The
two-sided P -values for T a

1 and T a
2 computed from the

Edgeworth expansion here are 0.0057 and 7× 10−22 re-
spectively.
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