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Abstract

limma is an R/Bioconductor software package that provides an integrated solution for
analyzing data from gene expression experiments. It contains rich features for handling com-
plex experimental designs and for information borrowing to overcome the problem of small
sample sizes. Over the past decade, limma has been a popular choice for gene discovery
through differential expression analyses of microarray and high-throughput PCR data. The
package contains particularly strong facilities for reading, normalizing and exploring such
data. Recently, the capabilities of limma have been significantly expanded in two important
directions. First, the package can now perform both differential expression and differential
splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools
previously restricted to microarray data are now available for RNA-seq as well. These capa-
bilities allow users to analyse both RNA-seq and microarray data with very similar pipelines.
Second, the package is now able to go past the traditional gene-wise expression analyses in
a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in
terms of higher-order expression signatures. This provides enhanced possibilities for biolog-
ical interpretation of gene expression differences. This article reviews the philosophy and
design of the limma package, summarizing both new and historical features, with emphasis
on recent enhancements and features than have not been previously described.

1 Introduction

Gene expression technologies are used frequently in molecular biology research to gain a snapshot
of transcriptional activity in different tissues or populations of cells. These profiles are then com-
pared to identify gene expression changes associated with a treatment condition or phenotype of
interest. Gene expression studies may be randomized designed experiments in which a biological
system is perturbed, for example by a gene knock-out or by applying a specified stressor. Such



experiments are among the most powerful tools in functional genomics, providing insights into
normal cellular processes as well as disease pathogenesis. Or they may be observational studies
in which different phenotypes are compared, diseased and normal tissue for example or cells
from different populations. Such studies are common in cancer research and in the study of cell
development. In either case, the study design can range from simple two group comparisons
to complex set-ups with several experimental factors varying over multiple levels. Researchers
might be interested for example in whether a particular gene facilitates or blocks the action
of a particular drug, in which case knock-down and wild-type samples both with and without
drug treatment would be profiled. Obervational studies may involve multiple batch effects and
covariates that must be accounted for in the analysis.

Despite the complexity, gene expression studies often involve only a small number of bio-
logical replicates. The small but complex nature of gene expression studies poses challenging
statistical problems and motivates the use of a number of specialized statistical techniques in
order to get the most out of each dataset. We have developed the limma software over the past
decade to provide a framework for analysing gene expression experiments from beginning to end
in a flexible and statistically rigorous way.

The limma package is a core component of Bioconductor, an R-based open-source software
development project in statistical genomics [16, 64]. It has proven a popular choice for the
analysis of data from experiments involving microarrays [44, 8], high-throughput PCR [20],
protein arrays [35] and other platforms. The package is designed in such a way that, after
initial pre-processing and normalization, the same analysis pipeline is used for data from all
technologies.

Recently, the capabilities of limma have expanded significantly in two important directions.
First, the package can now perform both differential expression (DE) and differential splicing
analyses of RNA sequencing (RNA-seq) data [32, 68]. All the downstream analysis tools previ-
ously restricted to microarray data are now available for RNA-seq as well. These capabilities
allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second,
the package is now able to go past the traditional gene-wise expression analyses in a variety of
ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-
order expression signatures [32]. This provides enhanced possibilities for biological interpretation
of gene expression differences.

This article reviews the philosophy and design of the limma package, summarizing both
new and historical features, with emphasis on recent enhancements and features that have
not been previously described. The article outlines limma’s functionality at each of the main
steps in a gene expression analysis, from data import, pre-processing, quality assessment and
normalization, through to linear modelling, differential expression and gene signature analyses.

2 Statistical principles

2.1 Overview

limma integrates a number of statistical principles in a way that is effective for large-scale
expression studies. It operates on a matrix of expression values, where each row represents a
gene or some other genomic feature relevant to the current study and each column corresponds
to an RNA sample. On one hand, it fits a linear model to each row of data and takes advantage
of the flexibility of such models in various ways, for example to handle complex experimental
designs and to test very flexible hypotheses. On the other hand, it leverages the highly parallel
nature of genomic data to borrow strength between the gene-wise models, allowing for different
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Figure 1: Schematic of the major components that are central to any limma analysis. For each gene g,
we have a vector of gene expression values (yg) and a design matrix, X that relates these values to some
coefficients of interest (βg). The limma package includes statistical methods that (i) facilitate information
borrowing using empirical Bayes methods to obtain posterior variance estimators (s2∗g ), (ii) incorporate
observation weights (wgj where j refers to sample) to allow for variations in data quality, (iii) allow
variance modelling to accommodate technical or biological heterogeneity that may be present and (iv)
pre-processing methods such as variance stabilization to reduce noise. These methods all help improve
inference at both the gene and gene set level in small experiments.

levels of variability between genes and between samples, and making statistical conclusions more
reliable when the number of samples is small. All the features of the statistical models can be
accessed not just for gene-wise expression analyses but also for higher level analyses of gene
expression signatures. Figure 1 depicts the linear model and highlights the statistical principles
employed in a typical limma analysis.

2.2 Linear models analyse complete experiments together

The hallmark of the limma approach is the use of linear models to analyse entire experiments
as an integrated whole rather than making piece-meal comparisons between pairs of treatments.
This has the effect of sharing information between samples. Analysing the data as a whole also
allows us to model correlations that may exist between samples due to repeated measures or
other causes. This kind of analysis would not be feasible were the data partitioned into subsets
and analysed as a series of pairwise comparisons.

Linear models permit very general analyses. Researchers can adjust for the effects of multiple
experimental factors or can adjust for batch effects. The linear model might include time course
effects or regression splines. The linear model could even include the expression values themselves
of one or more genes as covariates, allowing researchers to test for inter-gene dependencies.
Linear models allow researchers to test very flexible hypotheses, not just simple comparisons
between groups but also interaction effects or more complex customized comparisons.

2.3 Shared global parameters link gene-wise models

A separate model is fitted for each gene, but the gene-wise models can be linked by global
parameters or global hyper-parameters. The use of global parameters is a simple means of
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sharing information between genes that can be used even for the smallest experiments, because
the global parameters can be estimated from the entire dataset involving all the genes at once.
This strategy allows the gene-wise models to incorporate such things as correlations between
duplicate probes for the same gene, or correlations between related RNA samples, or variations
in quality between the RNA samples.

2.4 Empirical Bayes borrows information between genes

The highly parallel nature of gene expression experiments lends itself to a particular class of
statistical methods, called parametric empirical Bayes, that borrow information between genes
in a dynamic way [14, 40]. The fact that the same linear model is fitted to each gene allows us to
borrow strength between genes in order to moderate the residual variances [63]. The estimated
variance for each gene then becomes a compromise between the gene-wise estimator, obtained
from the data for that gene alone, and the global variability across all genes, estimated by pooling
the ensemble of all genes. This has the effect of increasing the effective degrees of freedom with
which the gene-wise variances are estimated. It was an innovation of the limma package to
show that exact small-sample inference could be conducted using the empirical Bayes posterior
variance estimators [63]. This approach has proven particularly advantageous in experiments
with small sample sizes, ensuring that inference is reliable and stable even when the number of
replicates is small.

In recent years, the empirical Bayes procedures of limma have been enhanced in two im-
portant ways. First, the global variance estimate can now incorporate a mean-variance trend
[59, 47, 24]. This is important because many gene expression technologies produce data that is
less reliable at lower intensities or abundances. Second, the relative weighting of the gene-wise
and global variance estimators no longer needs to be the same for all genes. This allows a so-
phisticated robust empirical Bayes procedure in which hyper-variable genes are identified and
treated separately [46, 47]. Both of these enhancements improve statistical power and accuracy
by improving the modelling of the global characteristics of the data in a more flexible way.

2.5 Quantitative weights allow for unequal quality

Another unique feature of limma is the ability to incorporate quantitative weights into all levels
of the statistical analysis, from normalization, to linear modelling and gene set testing. Weights
can be applied to genes or to RNA samples or to individual expression values. Weights can be
used to give more emphasis to control probes during normalization, or can be used to down-
weight measurements or samples that are less reliable in a gene expression analysis. The weights
can be preset based on external quality information, or may be estimated from the expression
data itself. The use of weights increases power to detect differentially expressed genes, and
having a model based approach avoids the need for ad-hoc decisions on which observations or
samples to filter out [54].

2.6 RNA-seq and sequence data

All the downstream analysis features of limma are available for RNA-seq and other sequence
count data, as well as for data from microarrays and other platforms. Traditionally, RNA-
seq data requires specialized software based on the negative binomial or similar distributions
[57]. limma however is able to analyse RNA-seq read counts with high precision by converting
counts to the log-scale and estimating the mean-variance relationship empirically (Figure 3A)
and incorporating it into precision weights. The precision weights are computed using the voom
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function and incorporated into the analysis of log-transformed RNA-seq counts using the same
downstream commands as microarrays. The resulting pipeline gives comparable performance to
the best of the negative binomial based software packages but with greater speed and reliability
for large datasets [52, 24]. Additionally, and conveniently, only minimal pipeline changes are
required when switching between analyses for RNA-seq and microarray experiments within
limma. This also means that the same statistical tests with the same format of results and
graphical displays are available for both data types.

2.7 Variance models allow for unequal variability

Expression values often show some degree of heteroscedasticity, either because there is a rela-
tionship between abundance and measurement precision, or because some treatment conditions
are more heterogeneous than others. For example, tumours might be more variable than nor-
mal tissue. Concern for such effects has prompted some researchers to filter out low intensity
observations or to use Welch’s t-test for DE between two groups instead of classical pooled t-
tests. The use of weights and the ability to model global parameters allow limma to incorporate
unequal variances in a number of ways. One way is through estimating a mean-variance trend,
which can either be incorporated into the empirical Bayes procedure as mentioned above or used
to generate observation weights [24]. A recent development is the ability to estimate precision
weights associated with treatment groups or more generally with any given set of covariates.
More generally again, the mean-variance trend can be estimated in a treatment-specific way,
combining the two types of heteroscedasticity mentioned above. These approaches allow limma
to model unequal variances even for experiments with a small number of RNA samples. Im-
portantly, they accommodate unequal variances without compromising the linear modelling and
empirical Bayes framework of the package.

2.8 Using sets of genes to represent higher-level expression signatures

In recent years, the linear modelling capabilities of limma have been extended to higher-level
expression signature analyses involving co-regulated sets of genes. The idea is to use a set
of genes, together with their log-fold-changes, to represent the transcriptional signature of a
biological process or cell type. One way that this is done is by rotation technology, which permits
statistical significance to be tested for sets of genes for any linear model contrast. A particular
feature of rotation tests is the ability to incorporate prior information about the direction and
strength with which each gene is expected to contribute to the statistical signature. In this way,
limma provides a uniquely flexible means to relate new expression datasets to previous results
collated from earlier experiments, taking into account for example the fold-change and direction
of change for each gene in the earlier experiment.

A closely related statistical approach implemented in limma is to fit global covariance models,
either to estimate correlations between genes or to estimate the relatedness between the DE
profiles resulting from difference comparisons. These new analyses are described briefly later in
this article.

2.9 Pre-processing methods preserve information

Microarray expression data is measured as intensities, which need to be background corrected
and normalized before any statistical analysis can be conducted. limma includes a range of
background correction and normalization procedures suitable for different types of DNA mi-
croarrays or protein arrays. Notable are the maximum likelihood implementation of the normal-
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exponential convolution model for background correction [62] and the implementation of lowess
curves and normalization using quantitative weights. The guiding principle in the pre-processing
steps is to preserve information, avoiding missing values or inflated variances [55]. Normalized
intensities are offset from zero before transforming to the log-scale to avoid missing values or
large variances. Offsets in a range of moderate values have been shown to achieve an effective
compromise between noise and bias [61].

2.10 Mean-difference plots

Measuring expression in multiple RNA samples produces columns of correlated expression values,
which are highly correlated because they are measured on the same set of genes or genomic
features. It has long been established in the biomedical literature that the level of agreement
between correlated variables can be usefully examined by plotting differences vs means. Such a
plot is called a Bland-Altman plot [36] or a Tukey mean-difference plot [10]. Indeed the concept
of DE can be viewed as a measure of disagreement between expression measures for the same
genes in different samples. Mean-difference plots were introduced to the two-color microarray
literature by Dudoit et al. [13] and to the single-channel literature by Bolstad et al. [6], who
called them MA-plots. limma generalized the concept of an MA-plot in two ways. First, the
idea was extended to apply to sets of single-channel expression values. In this case, the plot is
used to compare each sample to the average of all other samples. A virtual array is constructed
by averaging the log-expression value for all the samples other than the sample of interest, and
then a mean-difference plot is made between the single array and the virtual array. Second, the
idea was extended to apply to the fitted model objects. In this case, the plot compares the log-
fold-changes for a chosen contrast versus the average log-expression values of each gene across
all samples. In effect, this plots a coefficient of the linear model versus an overall mean intercept
parameter. These ideas were part of the original limma package submitted to Bioconductor in
2003.

2.11 Parametric modelling versus permutation methods

It is worth mentioning what limma doesn’t do, which is permutation or re-sampling-based in-
ference. Permutation is frequently useful in large-scale studies when the aim is to compare two
groups. However permutation has a number of disadvantages which make it unattractive for
assessing differential expression in experiments with complex designs. If permutation is applied
only to samples involved in two treatment conditions to be compared, then the typically small
number of replicates is a severe limitation that will result in low power to detect differences. If
permutation is applied to all the samples in a multi-factor experiment, then the composite null
hypothesis being testing is an uninteresting one, and the power to reject it may be highly depen-
dent on the existence of differential expression between treatment conditions which are not of
primary interest. In other words, permutation cannot be tuned to test specific null hypotheses of
interest in a designed experiment. Even more importantly, permutation assumes that all samples
are independent and identically distributed under the null hypothesis, and these assumptions
are frequently, usually perhaps, unrealistic. In addition, permutation is potentially misleading
when the samples are correlated or of unequal precision. In other words, permutation is unable
to accommodate blocking structures or quality weights. In small, complex experiments, the
potential compromises involved in modelling expression values using parametric distributions,
which can never be perfectly correct, are outweighed by the gains in precision and accuracy by
modelling the variance structure more realistically.
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3 Pre-processing RNA-seq and other sequencing data

Figure 2 provides an overview of the functions available at each stage of a gene expression
analysis. The first step is to import expression data into the R session.

limma accepts RNA-seq data in the form of a matrix of read counts, with rows for genomic
features and columns for RNA samples. Alternatively it can accept a DGEList object from the
edgeR package. The genomic regions are often genes or exons, but could in principle be any
genomic feature of interest. In this article, the regions will usually be called genes for simplicity
of terminology. The read counts are processed by the voom function in limma to convert them
into log2 counts per million (logCPM) with associated precision weights. The logCPM values
can be normalized between samples by the voom function or can be pre-normalized by adding
normalization factors within edgeR.

Raw read counts are assembled outside limma using tools such as featureCounts [29], HTSeq-
counts [1] or RSEM [27]. The authors of this article find the Subread [28] and featureCounts
pipeline particularly convenient because it is fast, acccurate [68] and can be run from the R
prompt using the Rsubread package. The data input to limma should be counts, rather than
popular expression summaries such as reads-per-kilobase-per-million (RPKM), so that limma
can estimate the appropriate mean-variance relationship. The voom output can be converted to
RPKM values for convenience of interpretation, by subtracting log-gene-lengths, but this should
be done after running voom rather than before.

After running voom, downstream analysis for RNA-seq data is the same as for any other
technology. For example, RNA-seq data can be explored using boxplots or mean-difference
plots, similarly to single-channel microarray data. More detail is given about this in the following
sections.

4 Preprocessing microarray data

4.1 Reading or importing data

For DNA or protein microarrays, importing expression data often involves reading output files
created by an image analysis program. Alternatively, a data frame of expression values may be
read from a file or data might be directly imported as an R object.

The main limma function to read image output files is read.maimages. This function directly
supports formats written by many different image analysis programs including GenePix, Agilent
Feature Extraction, ArrayVision, BlueFuse, ImaGene, QuantArray and SPOT (Table 1). It also
supports the Stanford Microarray Database format. Output in other formats can be read if the
appropriate column names are supplied. Two-color and single-channel data are both supported.
Illumina files need special treatment: output from Illumina’s GenomeStudio can be read by
read.ilmn if exported as a text file or by read.idat if in binary format.

Probe annotation is also automatically read if contained in the image output files, or can be
read separately. readGAL supports the GenePix Gene Array List format. read.maimages includes
the ability to generate spot quality weights according to any user-specified rule based on any
information found in the image output files.

limma includes many possibilities for using or highlighting different types of control probes.
The functions readSpotTypes and controlStatus are provided to conveniently classify probes
based on text found in the input files. The status of each probe is automatically carried through
to appropriate downstream functions.
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Figure 2: The limma workflow. The diagram shows the main steps in a gene expression analysis, along
with individual functions that might be used and the corresponding classes used to store data or results.
Online documentation pages are available both for each individual function and for each major step.
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Table 1: Standard microarray data formats handled by limma. Data output by the following software
can be read-in using read.maimages or read.ilmn. limma can read files in other formats, provided the
user provides the names of the columns containing foreground and background intensities.

Software Vendor Channels

Agilent Feature Extraction Software Agilent Technologies 1/2
ArrayVision GE Healthcare 1/2
BlueFuse BlueGnome 1/2
GenePix Molecular Devices 1/2
BeadScan/GenomeStudio Illumina Inc 1
ImaGene BioDiscovery 1/2
QuantArray PerkinElmer Life Sciences 1/2
ScanArray Express PerkinElmer Life Sciences 1/2
SMD Stanford 1/2
Spot CSIRO 1/2

The function readTargets is provided to read information about the RNA samples or targets.
This information typically includes information about the treatment conditions and experimental
design.

limma can accept data objects containing expression data from other Bioconductor packages.
It can accept marrayNorm objects from the marray package, PLMset objects from the affyPLM
package, vsn objects from the vsn package, or objects of any class inheriting from ExpressionSet.
Alternatively, expression data can be supplied as a numeric matrix. Expression values can be
image intensities or normalized log-expression values.

4.2 Background correction

When array images are read, it is usual to read both foreground and background intensities for
each probe. The background intensities can be used to derive an estimate of the ambient intensity
affecting each probe. Removing this non-specific signal from the foreground intensity of each
probe is called background correction and it is typically the first step in processing microarray
images. Simply subtracting background from foreground intensities is too heavy-handed [55].
The limma backgroundCorrect function offers a range of more sophisticated alternatives, most
unique to the package. These include a method based on a convolution of normal distributions
[21] and a normal-exponential (normexp) convolution [55] with different options for parameter
estimation [62]. The plotFB function plots foreground against background intensities for each
array and is useful for choosing an appropriate correction method.

Illumina BeadChip data again benefits from special treatment. The nec function implements
normexp background correction for Illumina BeadArrays making special use of the control probes
that are specific to these arrays [61].

The propexpr function compares intensities to those of negative control probes to estimate
the total proportion of probes on each array that correspond to expressed genes [60]. This
provides an estimate of the size of the transcriptome in each sample and is useful for deciding
how many probes to filter from downstream analyses.

9



4.3 Normalization

Before meaningful comparisons can be made between treatment conditions in a designed ex-
periment, it is critical that the expression values are normalized so that all the samples are
as far as possible on the same measurement scale. The purpose of normalization is to remove
systematic effects due to technical differences between the assays unassociated with the bio-
logical differences of interest. Different technology platforms introduce different biases and so
require different normalization methods. The normalizeWithinArrays function normalizes data
from two-color microarrays by aligning the two channels for each array. A popular method is
to remove intensity-dependent dye-biases and spatial artifacts from M -values (log-intensity ra-
tios) using locally weighted regression (loess) [78]. The normalizeBetweenArrays function aligns
expression values between samples for one-color microarrays and other single channel platforms
using methods such as quantile normalization or cyclic loess [6]. Both functions provide a range
of different normalization methods suitable for different platforms. normalizeBetweenArrays also
implements separate channel normalization methods for two-color arrays [79, 67]. limma is the
only software to allow the use of quantitative weights in loess normalization [66], giving it the
ability to downweight less reliable probes or to give higher priority to control probes or house-
keeping genes. The latter ability has been exploited for normalizing assays when the proportion
of differentially expressed genes may be high, for example boutique arrays [43], miRNA arrays
[72], PCR arrays, protein arrays or protein mass spectrometry. Other enhancements include
the ability to replace the loess curve with a spline curve that has high robustness breakdown
properties, and the ability to apply empirical Bayes moderation to the spline curves for multiple
regions within the same array (robust-spline normalization).

The neqc function implements quantile normalization for Illumina BeadArrays making special
use of the control probes specific to these arrays [61].

All the between-arrays normalization methods are accessible for RNA-seq data from within
the voom function. Alternatively, voom has the ability to respect normalization factors computed
outside of limma by methods such as trimmed mean of M -values [58] or conditional quantile
normalization [18].

4.4 Graphical exploration of data quality

Diagnostic plots allow the user to visually inspect data from a designed experiment in order to
identify potential quality problems, such as degraded samples, or problems that arise due to array
handling or sample processing. Such displays may also reveal systematic biases that should be
removed prior to downstream analysis. Figure 3 presents examples from three different plotting
functions. Plots for individual arrays include the foreground-background plots mentioned above
(plotFG), and image plots which can reveal inconsistencies across the array surface (imageplot).

Mean-difference plots which show intensity-dependent trends in the log-ratios of two-color
arrays (plotMA, Figure 3B). The plotMA function can show similar plots for single channel data.
In this case, the mean-difference plot is constructed by comparing the log-expression values for
that sample compared with the mean of all other samples. The plotMA function makes it simple
to highlight particular subsets of probes or genes, for example control probes. Control probes are
automatically highlighted if they have previously been identified using controlStatus (Figure
3B).

The distribution of expression values can be compared between samples using box plots
or density plots (plotDensities). The latter is particularly useful when considering separate
channel analyses of two-color arrays.
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Figure 3: Example diagnostic plots produced by limma. (A) Plot of variability versus count size for
RNA-seq data, generated by voom with plot=TRUE. This plot shows that technical variability decreases
with count size. Total variability asymptotes to biological variability as count sizes increases. (B) Mean-
difference plot produced by the plotMA function for a two-color microarray. The plot highlights negative
(NC), constant (DR) and differentially expressed (D03, D10, U03, U10) spike-in controls. Regular probes
are non-highlighted. (C) Multidimensional scaling (MDS) plot of a set of 30 microarrays, generated by
plotMDS. All arrays are biologically identical and the plot reveals strong batch effects. Distances represent
leading log2-fold changes between samples.

5 Finding differentially expressed genes

5.1 Exploration of sample relationships

After the pre-processing steps described above, the next major analysis stage is to identify
differentially expressed genes. It is advisable to begin the DE analysis with a plot that visualizes
the relative differences in transcriptional profile between the samples. The plotMDS function uses
multi-dimensional scaling to plot differences in expression profiles between different samples
(Figure 3C). Distances between samples on the plot represent leading fold change, which is
defined as the root-mean-square average of the log-fold-changes for the genes best distinguishing
each pair of samples. This provides a type of unsupervised clustering of the samples. It is useful
for examining how different are the profiles produced by different experimental factors and for
identifying unexpected patterns, such as batch effects, that should be adjusted for during the
linear model analysis. This helps guide the construction of the design matrix used for the linear
modelling below.

The plotRLDF function provides a supervised plot of the samples that shows whether the
expression data can distinguish a set of known groups. The function implements a regularized
version of linear discriminant functions.

The removeBatchEffect function can be used to remove systematic variation due to batches
or other covariates prior to plotting the data, so that the effect of treatments can be better seen.

5.2 Linear modelling

The core component of the limma package is the ability to fit gene-wise linear models to gene ex-
pression data in order to assess DE [63]. The basic idea is to estimate log-ratios (for two-channel
data) or log-intensities (for single-channel data) between two or more target RNA samples si-
multaneously.

Each analysis begins with a matrix of expression levels, with probes/genes/exons in the rows
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and different samples (biological/technical replicates) in the columns. The linear modelling is
performed in a row-wise fashion, with regression coefficients and standard errors either directly
estimating the comparisons of interest or via contrasts to obtain test-statistics for gene ranking
that can be further summarized at the gene set level to perform gene signature/pathway-level
ranking.

The flexibility of the linear modelling approach allows almost any experimental design to be
handled. Experiments with two or more groups, factorial and time-course designs, and internal
controls such as dye-swaps can all be modelled and summarized using the lmFit function. Where
appropriate, nuisance variables such as batch and dye effects can also be modelled. Models can
be fit robustly or by least squares. Once a linear model is fitted, the makeContrasts function
can be used to form a contrast matrix. The fitted model object and contrast matrix are used by
contrasts.fit to compute log2-fold-changes and t-statistics for the contrasts of interest. This
allows all possible pairwise comparisons between treatments to be made.

The plotSA function provides a useful diagnostic plot of the linear model fit, plotting gene-
wise residual standard deviations against average log-expression. This allows mean-variance
trends to be readily identified, should they exist.

5.3 Quality weights and heteroscedasticity

limma is the only package that allows variations in quality to be handled in a graduated way
via quantitative weights. Both observation-level [56, 64, 24] and sample-specific weights [54]
can be used in an analysis. For microarray data, the arrayWeights function estimates relative
array variances, which are converted to weights which can be used in the linear model analysis
to down-weight observations from less reliable arrays. Probe and array weights can be easily
combined by multiplying them together, and when used appropriately, have been demonstrated
to increase power to detect DE [56, 54].

For RNA-seq data, the voomWithQualityWeights function combines observation-level and
sample-specific weights for use in the subsequent linear modelling.

5.4 Blocking and random effects

limma includes a unique strategy for incorporating the fact that observations or samples may
be correlated. The strategy is similar to fitting a random effects model, with the difference that
all genes are constrained to share the same intrablock correlation. The duplicateCorrelation

function is used to estimate the consensus correlation. The correlation structure is then incor-
porated into the linear model fit and hence into all tests for DE. Originally the idea was used
to estimate the correlation between replicate copies of the same probe on a microarray [65].
The correlation strategy preserves more information than simply averaging the replicate probe
copies. More generally, the same idea is also used to model the correlation between related RNA
samples, for example repeated measures on the same individual or RNA samples collected at
the same time.

5.5 Separate channel analysis of two-color microarrays

Two-color microarrays are traditionally analysed in terms of log-ratios between the two channels
hybridized to each probe. limma also provides the possibility of analysing two-color microarrays
as if they were single channel microarrays with two separate samples hybridized to each physical
array. This provides a very powerful type of analysis in which intensities can be directly com-
pared between microarrays. The pairing of the red and green channels from each array is kept
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track of by estimating the correlation between the two channels hybridized to each probe [67].
This type of separate channel analysis uses the intraspotCorrelation and lmscFit functions.

All the linear model fits, whether using lmFit or lmscFit, produce a fitted model object
with the same structure. The same fitted model applies regardless of whether correlations have
been estimated, whether robust regression or least squares has been used, or whether quality
weights have been included. This consistency allows the same framework for DE to be used for
all experimental designs and platform technologies.

5.6 Testing for differential expression

An empirical Bayes framework to borrow information between genes when estimating the vari-
ances is implemented in the eBayes function. Gene-wise variances are squeezed towards the
common or trended variance, which reduces the number of false positives for genes with very
small variances and improves power to detect DE for genes with larger variances. limma includes
a robustified shrinkage strategy that allows for gene-wise shrinkage factors to be estimated. This
ensures unusually large variances are not squeezed too heavily, reducing the chance that they
will appear statistically significant; while more consistently expressed genes are squeezed more
severely towards the common variance. This robust strategy offers the benefits of shrinkage to
the majority of the genes, while negating the effects of outliers.

For each coefficient in the linear model or contrast, empirical Bayes moderated t-statistics
and their associated p-values (or log-odds of DE) are generally used to assess the significance of
the observed expression changes. Moderated F -statistics which combine the t-statistics for all
contrasts into an overall test of significance for each gene can also be used.

When one has a particular cut-off for log-fold-change in mind, the treat function can be used
to test whether the log2-fold-change is greater than a threshold rather than merely different to
zero [37]. This can be effective for prioritizing results that are biologically as well as statistically
significant.

limma provides a number of options to adjust tests for multiple testing. Users can control
either the family-wise type I error rate or the false discovery rate [5]. As well as the usual control
for multiple testing across multiple genes, limma is the only software package to provide methods
for error rate control across multiple contrasts and genes simultaneously. For individual tests,
multiple testing can be applied using the topTable function. The decideTests function gives
access to the full range of options.

To visualize the results of a DE analysis for single or multiple contrasts, limma provides
a number of plotting options. Figure 4 shows three such displays: a volcano plot showing
the DE results from a single condition, a Venn diagram showing the number of differentially
expressed genes in multiple experimental conditions and a barcode enrichment plot highlighting
a particular gene signature in a DE analysis ranked by moderated t-statistics.

Another useful plot is produced by plotMA, which plots estimated log-fold-changes against
mean log-expression for each gene. This allows the magnitude of changes to be visualized in the
context of overall expression level, see for example Figure 5C of Liu et al. [32].

5.7 Testing for differential splicing

The linear model framework of limma is extended to test very easily for differential splicing events
when exon-level expression data is available. The data can be either from an exon microarray
or from RNA-seq data summarized at the exon level. In either case, the approach is based on
fitting linear models to the exon-level expression data. The approach can relate differential exon
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Figure 4: Example plots displaying results from DE or gene set analyses. (A) Volcano plot showing fold
changes and posterior odds of DE for a particular comparison (RUNX1 over-expression vs wild-type in
this case), generated by volcanoplot. Probes with p < 0.00001 are highlighted in red. (B) Venn diagram
showing overlap in the number of DE genes for three comparisons from the same study as (A), generated
by the vennDiagram function. (C) Gene set enrichment plot produced by barcodeplot. The central
bar orders differentially expressed genes by significance from up to down upon Pax5 restoration in an
RNA-seq experiment [32]. The vertical bars mark genes that are induced (red) or repressed (blue) upon
the transition from large cycling pre-B cells to small resting pre-B cells during normal B cell development
according to the published literature [19] The plot shows a strong positive concordance between Pax5
restoration and the large to small cell transition. The roast function can be used to assign statistical
significance to this correlation.

usage to continuous as well as categorical predictors or to any contrast in a linear model. The
test is conducted by the diffSplice function and results are displayed using plotSplice and
topSplice. The plotExons function is also useful for exploring exon expression for individual
genes. This approach is considerably faster than alternative approaches to differential splicing,
making large-scale surveys of differential exon usage feasible.

6 Higher-level analyses

Linear modelling of gene expression data provides the ideal platform from which to attack
larger functional genomic questions related to gene-wise independence or interaction and the
decomposition of gene signatures into distinct molecular pathways. This section describes higher-
level analyses involving multiple genes.

6.0.1 Estimating the proportion of true null hypotheses:

First we consider DE from a genomic point of view. The DE analyses described so far identify
individual differentially expressed genes according to a FDR criterion. However, for most studies,
there are likely to be false negatives: truly differentially expressed genes that are not detected
as differentially expressed because the study did not have enough statistical power to identify
them with confidence.

The propTrueNull function estimates the number of truly differentially expressed genes that
remain to be identified. Mathematically, it estimates the proportion of true null hypotheses in a
collection of hypothesis tests given a vector of p-values. In a gene expression study, it estimates
the proportion of non-differentially expressed genes, out of all tested, for any contrast in the
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linear model. The function implements a number of different methods. The default is based on
averaging local false discovery rates across the p-values [46]. Other methods are the histogram
method of [41, 42], the convex decreasing density estimate of [22], and a very simple estimate
based on averaging the p-values.

6.1 Genuine association of gene expression profiles

Gene expression experiments typically involve a number of different treatment conditions. A
question that often arises is this: to what extent do two different treatments produce similar
or different expression profiles? One way to address this question is to count the overlap in
differentially expressed genes from the two treatments. This approach however is too crude.
It is very sensitive to the significance cut-off used to identify differentially expressed genes,
has little chance of success in situations where power to detect differentially expressed genes is
relatively low, and is subject to technical biases when both treatments are compared back to the
same control samples. The genas function [46] addresses these problems. It tests whether two
different contrasts in a linear model affect the same genes in similar or different ways, adjusting
for biases, without needing to apply a significance cut-off for assessing DE. More technically, it
estimates the true biological correlation between the log2-fold-changes of two different contrasts.
By biological correlation, we mean the correlation that would exist between log-fold-changes if
they could be measured perfectly without any statistical error. genas is based on a bivariate
generalization of the empirical Bayes model that is used to assess DE in limma. This method
is particularly powerful for gaining insight into commonly affected gene pathways when the
changes are small but consistent. For instance, applying genas to a microarray study looking
at the relationship between polycomb repressor complex (PRC) 1 and PRC2 facilitated the
discovery of the opposing roles of these two complexes [34]. This relationship would have been
missed if the analysis were restricted to the statistically significant genes from each contrast
alone.

6.2 Gene set testing

Gene set analyses assess the overall significance of a set of co-regulated genes. Each gene set is
chosen to represent a particular molecular pathway or some other biological process of interest.
Gene sets are defined by gene annotation external to the current expression study, for example
from Gene Ontology (GO) database [3] or from previous expression studies. For gene sets defined
by previous studies, the genes may optionally be annotated with the direction and magnitude
of expression changes in the earlier experiment. In this way, a gene set may contain genes both
positively and negatively associated with the molecular pathway that it represents.

A range of options to look for expression changes in an a priori defined pathway or gene
set are available in the limma package (i.e., wilcoxGST, goana, camera, roast and romer). There
are two major types of gene set tests: competitive tests and self-contained tests. In competitive
tests, the different gene sets are pitted against one another. In self-contained tests, only the
genes in the gene set are considered and whether they are associated with the sample groups
[17].

If the primary interest is to use Gene Ontology (GO [3]) terms as gene sets, the goana

function is available. It applies a generalized hypergeometric test for enrichment of each GO
term in the up and down differentially expressed genes from a linear model fit. It can also test
for over-representation of GO terms in one or more sets of genes. goana includes the ability to
adjust for gene length or abundance biases in DE detection in a similar way to the goseq package
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[80].
Another simple approach is implemented in the geneSetTest/wilcoxGST functions which per-

form rank-based tests (as used in Michaud et al. [38]). Such tests assess how highly ranked a
group of genes is in a particular contrast relative to other genes using a test statistic for DE.
They assume the expression level of each gene is independent of the other genes. Ignoring pos-
itive correlation between genes in a gene set tends to cause optimistic p-values in competitive
gene set tests.

More sophisticated competitive tests that take into account dependence of the genes in the
linear modelling framework have also been implemented via camera [75, 74]. Camera is a variance
adjusted mean-rank testing method. The variance of the summary statistics would be higher
than estimated, if the (mostly) positive average inter-gene correlation in a gene set is considered.
In camera, a variance inflation factor is computed and used to adjust the variance of the summary
statistics. This avoids overly optimistic p-values in the test results.

The roast (rotation gene set tests) method tests the self-contained null hypotheses of whether
a given gene set is differentially expressed [73]. Instead of permutation, it uses rotation, which
is a smoothed version of permutation suitable for linear models [23]. For genes in the set, the
residual space orthogonal to the nuisance parameters in the linear model is randomly rotated
to generate the distribution of the parameter of interest under the null hypothesis [23]. Unlike
permutation of samples, rotation does not change the correlation between genes which ensures
that roast holds its size. By using the full residual degrees of freedom in linear models, roast
can provide higher power in small complex gene expression experiments. It accommodates
any correlations, blocking structure or weights used in the original linear model. As a self-
contained test, roast tends to have greater power than an equivalent competitive test. The
mroast function applies this procedure to multiple gene sets in series. Although roast can be
used to test a large number of gene sets, roast is most useful for linking different datasets
by finding similarities in gene expression patterns using gene weights from other differential
expression analyses [31, 30, 4, 74]. Potential applications for roast include those where the set
might not be made up of genes, e.g., exon-level expression analyses to test whether any exon of
a given gene is differentially expressed.

Gene set enrichment analysis (GSEA) is an approach which correlates a large database of co-
regulated gene sets with respect to a microarray or RNA-seq data set [39, 69]. romer implements
a GSEA of a battery of gene sets similar in motivation to Subramanian et al. [69] but designed for
use with linear models. It is a competitive test, in that the different gene sets are pitted against
one another. Set-level test statistics are calculated as the mean of the moderated t-statistics (or
mean from the top 50% ranked genes). Like roast, it uses rotation [23] to calculate p-values, and
can be used with any linear model with some level of replication. It takes into account the large
number of moderate gene expression changes we observe, and can perform competitive gene
set tests using any collection of gene sets, such as the Broad Institute’s Molecular Signatures
database (MSigDB) [69]. Therefore, modest changes in individual genes are less relevant, and
instead changes across gene sets are detected.

Both camera and romer are competitive tests and ideal for testing large numbers of gene sets.
However, when there are many differentially expressed genes that are not in the gene set or
many differentially expressed genes overall, the power of camera and romer will decrease. It is
known that the DE status of genes outside the gene set will not impact on the significance of a
self-contained test, so the power of romer can be higher than camera in this situation [34, 2].

To perform romer, mroast or camera gene set tests with a database of gene sets, we need to
know the indices of the gene sets in the expression data matrix. A simple way to match between
gene identifiers in the gene set to the expression matrix is to use the function id2indices. To map
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a set of gene symbol aliases to the set of official gene symbols, the functions alias2SymbolTable

or alias2Symbol can be used. The limma authors maintain mouse and human versions of the
MSigDB collections [69] in R format that can be conveniently used with these functions (http:
//bioinf.wehi.edu.au/software/MSigDB).

Camera, roast and romer all operate on the pre-processed gene expression data matrix. If
only the statistics or p-values for individual genes are available, for example from a genome-wide
association study, then the geneSetTest/wilcoxGST functions can be used. These methods can
also accommodate observational and/or sample-specific weights in the gene set test.

The ranks of genes from a particular gene signature in a given data set can be visualized
using the barcodeplot function (Figure 4C), which highlights the genes from a set using vertical
bars, with a smoother line showing the (tri-cube) moving average of the ranks from the genes
in the set. The barcodeplot function can optionally display varying weights for different genes,
for example log-fold-changes from a previous experiment.

7 User-interface

7.1 Object-oriented programming

A simple but appropriate object-oriented paradigm provides users with a consistent analysis
interface that is very easy from a user point of view. Many limma functions are generic or
operate appropriately on objects of different classes. limma defines a number of classes which
have been tailored to handle both microarray and RNA-seq data. The philosophy has been to
define simple list-based data objects that can be easily explored and manipulated by users, in
the same style as familiar, long-standing core functions in R such as lm and glm.

For raw intensity data, the classes ‘RGList’ and ‘EListRaw’ are used to store two-color and
single-channel data respectively. These objects are often created using the function read.maimages

and contain the raw values from the image analysis output files along with probe annotation
information.

Normalized data is stored in ‘MAList’ or ‘EList’ objects. Normalized two-color data is
converted from red and green intensities, R and G, into M and A-values, which hold the log-
ratio and average log-intensity values for each spot. Single channel data is background corrected
and log2 transformed and stored in an ‘EList’ object. For RNA-seq data, the voom transformed
matrix of gene/exon counts is also stored in an ‘EList’ object.

The next major classes store output from a DE analysis. ‘MArrayLM’ objects store the result
of fitting gene-wise linear models to the normalized intensities or log-ratios. Objects of this class
are created by the lmFit and eBayes functions. After running decideTests, an object of class
‘TestResults’ stores the results of testing a set of contrasts equal to zero for each probe/gene.

All of these data classes obey many analogies with matrices. In the case of ‘RGList’,
‘MAList’, ‘EListRaw’ and ‘EList’, rows correspond to probes/genes and columns to different
samples. In the case of ‘MarrayLM’ and ‘TestResults’ rows correspond to unique probes/genes
and the columns to linear model coefficients or contrasts. The standard R functions summary,
dim, length, ncol, nrow, dimnames, rownames, colnames have methods for each of these classes.
Objects of any of these classes may also be subsetted. Multiple data objects may be combined
by rows to add extra probes, or by columns to add extra arrays.

Furthermore all of these classes may be coerced to be of class matrix using as.matrix,
although this entails loss of information. Fitted model objects of class ‘MArrayLM’ can be coerced
to class data.frame using as.data.frame in R. The first five classes belong to the virtual class
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‘LargeDataObject’ for which a show method is defined to display the leading rows of a large
vector, matrix or data.frame.

7.2 Computational efficiency

The limma package is implemented primarily in R [50] and includes some C code to speed
up computationally intensive steps. At every stage, effort has been expended to achieve high
numerical reliability and efficiency. The memory requirements are linear in the number of genes
and the number of samples. Most estimation procedures finish in a few seconds on a standard
desktop computer and virtually all in less than a minute.

7.3 Availability

The limma software is freely available online as part of the Bioconductor project (http://www.
bioconductor.org). More than 120 other Bioconductor packages make use of limma (as of
March 2014). The limma package is used as a building block or as the underlying computational
engine by a number of software projects designed to provide user-interfaces for gene expression
data analysis including limmaGUI [71], affylmGUI [70], WebArray [76], RACE [49], CarmaWEB
[51], Goulphar [26], MAGMA [53], Asterias [12], GenePattern [11], GEO2R (http://www.ncbi.
nlm.nih.gov/geo/geo2r), the EBI expression atlas [45], Guide [9] and Degust (http://www.
vicbioinformatics.com/degust).

7.4 Documentation

The limma package provides three levels of documentation. First, each function has its own
documentation page that concisely but completely specifies the input data, options and output
format of the function. Similarly, each data class has a documentation page explaining all the
required and optional components of objects of that class. Care is taken to adhere to the same
standards and style that users will be familiar with from help pages in the base R packages.

Second, a series of more general subject help pages serve to link together functions and classes
that are used for related purposes. The subject pages cover the topics of (1) introduction, (2)
classes, (3) reading data, (4) background correction, (5) normalization, (6) linear models, (7)
individual channel analysis of two-colour data, (8) hypothesis testing for linear models, (9)
diagnostics and quality assessment, (10) gene set tests and (11) RNA-seq.

Third, the package comes with an extensive user’s guide of over 120 pages, available from
the drop-down menu in Windows or alternatively launched by the limmaUsersGuide command.
The user’s guide gives detailed advice on how to analyse a variety of common study designs. It
also includes ten fully-worked case studies for which full data and code is provided.

Users who need more help or advice are invited to post questions to the Bioconductor support
site (https://support.bioconductor.org). Questions are usually answered promptly, either
by the authors or by other members of the Bioconductor community. The support site archives
answers to many common questions, including many queries about experimental design and
setting up appropriate design matrices.

8 Conclusions

This article has summarized the current features of the widely used, open source limma package
for gene expression analysis. This software provides an integrated data analysis solution, using
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advanced computational algorithms to deliver reliable performance on large data sets and object-
oriented ideas to represent expression data and simplify the user interface. New functionality is
continually being added as model refinements and new use cases arise.

Although originally developed with microarray data in mind, the development of the voom
methodology unlocks the majority of analysis methods for use on RNA-seq data, such as ran-
dom effects modelling and gene set testing. As with any data analysis problem, the appro-
priate combination of methods to use will depend upon the biological question, platform used
(microarray/RNA-seq) and experimental design.

Being R-based, reports of limma analyses can be compiled using Sweave [25] or knitr [77]
and provided along with the raw data in a compendium to promote reproducible research in
genomics [15].

Applications of limma’s linear modelling strategy beyond the intended analysis of gene ex-
pression data have been made in a variety of applications, including the analysis of data from
Nuclear Magnetic Resonance spectroscopy, PCR (including Nanostring), quantitative proteomics
[7], DNA methylation arrays and comparative ChIP-seq [33].

As the cost of collecting genome-wide profiles continues to fall, we expect the popularity
of this approach to continue to grow, with new applications in the analysis of single cell gene
expression data, CRISPR/Cas9 knock-out screens and methylation analysis [48].
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[6] Bolstad, B.M., Irizarry, R.A., Åstrand, M., and Speed, T.P. (2003). A comparison of
normalization methods for high density oligonucleotide array data based on variance and
bias. Bioinformatics 19, 185–193.

[7] Brusniak, M.Y., Bodenmiller, B., Campbell, D., Cooke, K., Eddes, J., Garbutt, A., Lau,
H., Letarte, S., Mueller, L.N., Sharma, V., Vitek, O., Zhang, N., Aebersold, R., and Watts,
J.D. (2008). Corra: Computational framework and tools for LC-MS discovery and targeted
mass spectrometry-based proteomics. BMC Bioinformatics 9, 542.

[8] Caiazzo, M., Dell’Anno, M.T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sot-
nikova, T.D., Menegon, A., Roncaglia, P., Colciago, G., Russo, G., Carninci, P., Pezzoli,
G., Gainetdinov, R.R., Gustincich, S., Dityatev, A., and Broccoli, V. (2011). Direct gener-
ation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476,
224–227.

[9] Choi, J. (2013). Guide: a desktop application for analysing gene expression data. BMC
Genomics 14, 688.

[10] Cleveland, W.S. (1993). Visualizing Data. AT&T Bell Laboratories, Murray Hill, New
Jersey. ISBN 0-9634884-0-6.

[11] De Groot, P.J., Reiff, C., Mayer, C., and Muller, M. (2008). NuGO contributions to
GenePattern. Genes and Nutrition 3, 143–146.

[12] Diaz-Uriarte, R., Alibes, A., Morrissey, E.R., Canada, A., Rueda, O.M., and Neves, M.L.
(2007). Asterias: integrated analysis of expression and aCGH data using an open-source,
web-based, parallelized software suite. Nucleic Acids Research 35, W75–80.

[13] Dudoit, S., Yang, Y.H., Callow, M.J., and Speed, T.P. (2002). Statistical methods for iden-
tifying differentially expressed genes in replicated cDNA microarray experiments. Statistica
Sinica 12, 111–140.

20



[14] Efron, B. and Morris, C. (1973). Stein’s estimation rule and its competitors—an empirical
Bayes approach. Journal of the American Statistical Association 68, 117–130.

[15] Gentleman, R. (2005). Reproducible research: a bioinformatics case study. Statistical
Applications in Genetics and Molecular Biology 4, Article 2.

[16] Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,
Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry,
R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G.K.,
Tierney, L., Yang, J.Y., and Zhang, J. (2004). Bioconductor: open software development
for computational biology and bioinformatics. Genome Biology 5, R80.
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