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Abstract

Residual maximum likelihood estimation (REML) is often preferred to
maximum likelihood estimation as a method of estimating covariance pa-
rameters in linear models because it takes account of the loss of degrees of
freedom in estimating the mean and produces unbiased estimating equa-
tions for the variance parameters. In this note it is shown that REML
has an exact conditional likelihood interpretation, where the conditioning
is on an appropriate sufficient statistic to remove dependence on the nui-
sance parameters. This interpretation clarifies the motivation for REML
and generalizes directly to non-normal models in which there exists a low
dimensional sufficient statistic for the fitted values. The conditional likeli-
hood is shown to be well defined and to satisfy the properties of a likelihood
function, even though this is not generally true when conditioning on statis-
tics which depend on parameters of interest. Using the conditional likeli-
hood representation, the concept of REML is extended to generalized linear
models with varying dispersion and canonical link. Explicit calculation of
the conditional likelihood is given for the oneway layout. A saddle-point
approximation for the conditional likelihood is also derived.

Keywords: residual maximum likelihood, restricted maximum likelihood,
conditional likelihood, exponential dispersion model, modified profile like-
lihood, saddle-point approximation, oneway layout.

1 Introduction

Patterson and Thompson (1971) introduced residual maximum likelihood esti-
mation (REML) as a method of estimating variance components in the context
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of unbalanced incomplete block designs. REML is often preferred to maximum
likelihood estimation because it takes account of the loss of degrees of freedom
in estimating the mean and produces unbiased estimating equations for the vari-
ance parameters. Alternative and more general derivations of REML are given by
Harville (1974), Cooper & Thompson (1977) and Verbyla (1990). In all of these
the residual likelihood is presented as the marginal likelihood of the error con-
strasts. This makes generalization of the residual likelihood principle to nonlinear
models or non-normal distributions difficult since zero-mean error contrasts do
not generally exist.

Cox and Reid (1987) give an approximate conditional likelihood which reduces
to REML when used to estimate covariance parameters in normal linear models.
Although Cox and Reid’s conditional likelihood is approximate, and is based on a
simplification of Barndorff-Nielsen’s (1983, 1985) modified profile likelihood which
reduces to REML only in special cases, it does suggest a conditional interpretation
for REML. In this paper we show that REML has an exact conditional likelihood
interpretation in which the conditioning is on an appropriate sufficient statistic
to remove dependence on the nuisance parameters. This interpretation clarifies
the motivation for REML and generalizes directly to non-normal models in which
there exists a low dimensional sufficient statistic for the fitted values.

Consider the linear model y = Xβ+e where y is an n×1 vector of responses,
X is an n × p design matrix of full column rank and e ∼ N(0,Ω) is a random
vector. The covariance matrix Ω is a function of a q-dimensional parameter γ,
and is assumed positive definite for γ in a neighbourhood of the true value. For
any fixed value of γ, the statistic t = AXTΩ−1y, where A is any nonsingular
p×p matrix function of γ, is complete sufficient for β. We show that the residual
likelihood can be viewed as the conditional likelihood of y given t. We show, given
the above form for t, that the conditional likelihood is well defined and satisfies
the properties of a likelihood function, even though this not generally true when
conditioning on statistics which depend on parameters of interest.

Using the conditional likelihood representation, the concept of REML is ex-
tended to generalized linear models with varying dispersion. We assume that
y1, . . . , yn follow a generalized linear model with canonical link, design matrix X
and weights wj/φj. The wj are known prior weights and the φj are assumed
to depend on γ. The REML estimator of γ is defined to be that which max-
imizes the conditional likelihood of y given t = AXTΩ−1y where in this case
Ω = diag(φj/wj). Explicit calculation of the conditional likelihood is given for
the oneway layout. A convenient saddle-point approximation is derived for use in
other cases.

The idea of conditioning to remove nuisance parameters goes back at least to
Bartlett (1936, 1937), and is discussed extensively by Kalbfleisch and Sprott (1970).
Our conditional likelihood is direct and differs from that suggested by Kalbfleisch
and Sprott and motivated by their “Euclidean assumption”. The difficulties that
the Euclidean assumption was intended to overcome do not occur when the con-
ditioning statistic is of the form given above.

McCullagh and Tibshirani (1990) give an estimating equation method of ad-
justing profile likelihoods for nuisance parameters, which reduces to REML when
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estimating covariances in normal linear models. Again this is not generally equiv-
alent to our conditional likelihood but, because it produces unbiased estimating
equations, may approximate our approach in large samples.

2 Conditional Likelihood

Consider an arbitrary density or probability mass function f(y;β,γ) where β is a
vector of nuisance parameters. If there exists a statistic t(y) sufficient for β then
the nuisance parameters can be eliminated from the likelihood by conditioning on
it. We have in mind cases in which f is, for fixed γ, an exponential family so that
t is complete sufficient and of the same dimension as β. Let (t, a) be a one-to-one
transformation of y, let J1 = ∂tT/∂y and J2 = ∂aT/∂y and let ft be the density
or probability mass function of t. The parameter of interest, γ, can be estimated
by maximizing the conditional log-likelihood

`a|t(y;γ) = log f(y;β,γ)− log ft(t;β,γ) + log |(J1, J2)| (1)

which is free of β. If the maximum likelihood estimator of β is a one-to-one
function of t then it can be argued that there is no available information in t
about γ in the absence of knowledge of β, i.e., the information in t is entirely
consumed in estimating β. Then there should be, intuitively, no information loss
in estimating γ from the conditional rather the full likelihood. See Sprott (1975)
for an attempt to make this idea more precise.

For the above conditional likelihood to be useful it is necessary that a not
depend on γ; otherwise inference about γ would depend on the specific choice of
a. If t depends on γ it is necessary to take account of the information contained in
J1. The following lemma shows that a suitable a exists for the models considered
in this paper and that t can be chosen so that the Jacobian is independent of the
parameters.
Lemma. Let t = AXTΩ−1y where X is an n × p design matrix of full column
rank and A and Ω are full rank p × p and n × n matrices respectively depending
on γ. Let a = ZTy where Z is a n× (n− p) matrix of full column rank such that
XTZ = 0. Then (t, a) is a one-to-one transformation of y, and Jacobian of the
transformation is |ZTZ|1/2|XTX|−1/2|XTΩ−1X||A|.

Proof. Ω−1/2X and Ω1/2Z are orthogonal and of full rank. Therefore (Ω−1/2X,Ω1/2Z)
is nonsingular, as is

Ω−1/2(Ω−1/2X,Ω1/2Z)

(
AT 0
0 In−p

)
= (Ω−1XAT , Z).

This shows that (t, a) is a one-to-one transformation. The Jacobian is

|(J1, J2)| =
∣∣∣∣∣ JT1 J1 JT1 J2
JT2 J1 JT2 J2

∣∣∣∣∣
1/2

= |JT2 J2|1/2|JT1 J1 − JT1 J2(JT2 J2)−1JT2 J1|1/2.
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Now J2 = Z and I−Z(ZTZ)−1ZT is the orthogonal projection onto the null space
of Z and is therefore equal to X(XTX)−1XT , so

|(J1, J2)| = |ZTZ|1/2|JT1 X(XTX)−1XTJ1|1/2.

Putting J1 = Ω−1XA and factoring the determinant gives the required result. 2

The conditional likelihood (1) is invariant with respect to A. A convenient
choice is A = (XTΩ−1X)−1 because then the Jacobian becomes |ZTZ|1/2|XTX|1/2
which is independent of the parameters. Without loss of generality we choose
|ZTZ| = 1 so that a is a volume-preserving function of y. We define the condi-
tional log-likelihood of y given t to be

`y|t(y;γ) = log f(y;β,γ)− log fβ̃(y;β,γ) +
1

2
log |XTX|

where fβ̃ is the density or probability mass function of β̃ = (XTΩ−1X)−1XTΩ−1y.
Since f and fβ̃ integrate to one for all γ, `y|t satisfies the usual properties of a

log-likelihood function in that ˙̀
y|t = ∂`y|t/∂γ has expectation zero and var( ˙̀

y|t) =
E(−∂2`y|t/∂γ∂γT ).

Consider now the linear model described in the introduction. The residual
likelihood for γ is usually defined to be the marginal likelihood of a = ZTy
where Z is as above. Since a and t are in this case independent, it is trivially
true that the residual likelihood is the conditional likelihood of y given t. Since
β̃ ∼ N{β, (XTΩ−1X)−1}, we calculate

`y|t(y;γ) = −n
2

log(2π)− 1

2
log |Ω| − 1

2
(y −Xβ)TΩ−1(y −Xβ) +

p

2
log(2π)

−1

2
log |XTΩ−1X|+ 1

2
(β̂ − β)TXTΩ−1X(β̂ − β) +

1

2
log |XTX|

=
n− p

2
log(2π)− 1

2
log |Ω| − 1

2
log |XTΩ−1X| − 1

2
yTPy +

1

2
log |XTX|

where P = Ω−1 − Ω−1X(XTΩ−1X)−1XTΩ−1. This is identical to the residual
likelihood function given by Harville (1974) and Cooper and Thompson (1977).

3 Generalized Linear Models

Consider the probability density function defined by

f(y; θ, φ) = exp[{yθ − κ(θ)}/φ+ c(y, φ)] (2)

where φ > 0 and θ ∈ Θ = {θ′ : κ(θ′) < ∞}. Following Jørgensen (1987), the
distribution defined by f(y; θ, φ) is called an exponential dispersion model with
dispersion parameter φ, and is denoted ED(µ, φ) where µ = E(y) = κ̇(θ). The
cumulant function κ() can always be chosen so that κ(0) = 0 and exp c(y, φ) =
f(y; 0, φ), and assuming this has been done let C(φ) denote the distribution with
this latter density. In that case s→ κ(s)/φ is the cumulant generating function of
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y/φ with y ∼ C(φ) and s→ {κ(s+θ)−κ(θ)}/φ is the cumulant generating function
of y/φ with y ∼ ED(µ, φ). The process by which the exponential dispersion model
is generated from the base density exp c(y, φ) is often called exponential tilting.

Let yj ∼ ED(µj, φj/wj), j = 1, . . . , n, be independent random variables where
the wj are known weights. A generalized linear model arises if a link-linear pre-
dictor is assumed for the means, g(µj) = xTj β where xj is a vector of covariates, β
is an unknown p-vector of regression parameters and g() is a known link function.
We assume also that the dispersions φj depend on an unknown parameter vector
γ, for example through a link-linear predictor h(φj) = zTj γ as in Smyth (1989),
where zj is a vector of covariates and γ is an unknown parameter vector.

Let Ω = diag(φj/wj) and X be the n×p matrix with xTj as ith row. We assume
g() to be the canonical link function such that g(µj) = θj, so that t = XTΩ−1y
is a complete sufficient statistic for β. We define the REML estimate of γ to be
that which maximizes the conditional likelihood of y given t.

The conditional log-likelihood of y given t is

`y|t(y;γ) = log f(y;β,γ)− log ft(t;β,γ) +
1

2
log |XTX| − log |XTΩ−1X|.

For fixed φj the sufficient statistic t has itself an linear exponential family distri-
bution with cumulant function

κt(β) =
n∑
j=1

wjφ
−1
j κ(xTj β)

where κ() is the cumulant function of the yj. The cumulant generating function
of t is Kt(s) = κt(β + s)− κt(β), so the probability density function of t is given
by

ft(t;β,γ) =
1

(2πi)p

∫
exp

{
κt(β + s)− κ(β)− sT t

}
ds

where the integral is taken over the imaginary axis with respect to each variable.
This can be factorized

ft(t;β,γ) = exp{tTβ − κt(β)} 1

(2πi)p

∫
exp

{
κt(β + s)− tT (β + s)

}
ds

= exp{tTβ − κt(β)} 1

(2πi)p

∫
exp

{
κt(s)− tT s

}
ds

provided that κt(s) has no singularities in any sj between the imaginary axis and
the imaginary axis shifted by βj. This shows that

`y|t(y;γ) =
n∑
j=1

c(yj, φj/wj)− log
1

(2πi)p

∫
exp

{
κt(s)− tT s

}
ds

− log |XTΩ−1X|+ 1

2
log |XTX| (3)

which exhibits lack of dependence on β.
Now κt(s) would be the cumulant generating function of t if the yj were dis-

tributed according to the base distributions C(φj/wj). Therefore (3) can be viewed
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as the conditional likelihood of y given t with the yj sampled from C(φj/wj) rather
than from ED(µj, φj/wj). In the full density (2) the exponential family parameter
θ determines the location of the distribution while φ determines the dispersion.
Intuitively, the effect of conditioning on the sufficient statistic t is to reverse the
process of exponential tilting, returning to the base distribution defined by c(y, φ)
in which only the dispersion parameter appears.

In many cases it will be inconvenient to compute the integral in (3). The
saddle-point approximation to the density which the integral represents is

(2π)−p/2|I(ŝ)|−1/2 exp{κt(ŝ)− tT ŝ}

where ŝ solves κ̇t(s) = t and I(s) = κ̈t(s). Now t− κ̇t(s) = XTΩ−1{y−µ(s)}, so
ŝ solves the normal equations for the generalized linear model and is therefore the
maximum likelihood estimator ŝ = β̂γ for β with γ fixed. Also κ̈t(ŝ) = XTWX,
where W = diag{V (µ̂j)wj/φj}, which is the estimated information matrix for β
with γ fixed. The saddle-point approximation therefore is

(2π)−p/2|XTWX|−1/2 exp{κt(β̂γ)− tT β̂γ}

and the approximate conditional likelihood is

`y|t(y;γ) ≈ log f(y; β̂γ,γ)+
p

2
log 2π+

1

2
log |XTWX|−log |XTΩ−1X|+1

2
log |XTX|.

This reduces to the usual REML likelihood for normal data, when W = Ω−1. It is
equivalent to the approximate conditional likelihood of Cox and Reid (1987) when
the estimating a constant dispersion. In other cases it differs from Cox and Reid’s
approximate conditional likelihood in that the information matrix (XTWX)−1 is
replaced by (XTΩ−1X)−1XTWX(XTΩ−1X)−1.

The final section of this paper works out REML estimators for certain gener-
alized linear models in which the conditional likelihood can be obtained in closed
form.

4 The Oneway Layout

Consider a generalized linear model with means described by a one-way classifi-
cation, i.e., let yjk, j = 1, . . . , b, k = 1, . . . , nj, be independent random variables
with yjk ∼ ED(βj, φjk) where the φjk are functions of a q-vector of parameters γ.
Such a model arises where there is only one factor in an experiment or when all
interactions are being estimated in a multi-factor experiment.

Consider first the case in which the dispersions are constant, φjk = γ for all j
and k. The group mean ȳj is sufficient for βj and is distributed as ED(βj, γ/nj).
The conditional log-likelihood is

`y|β̂(y; γ) =
b∑

j=1

{ nj∑
k=1

log f(yjk; θj, γ)− log f(ȳj; θj, γ/nj) +
1

2
log nj

}

=
b∑

j=1

{ nj∑
k=1

c(yjk, γ)− c(ȳj, γ/nj) +
1

2
log nj

}
.
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In the normal and inverse-Gaussian cases the REML estimator of γ is the resid-
ual mean deviance. In these cases the estimator γ̂ is uniform minimum variance
unbiased for γ, and (N − b)γ̂/γ ∼ χ2

N−b independently of the ȳj.
For the gamma distribution we can take c(y, γ) = log(y/γ)/γ − log Γ(1/γ) −

log y so

`y|β̂ =
1

γ

b∑
j=1

nj∑
k=1

log(yjk/ȳj)−N log Γ(1/γ)

+
b∑

j=1

log Γ(nj/γ)−
b∑

j=1

( nj∑
k=1

log yjk − log ȳj

)
.

This is an exponential family likelihood with canonical parameter ν = 1/γ, suf-
ficient statistic D(y) =

∑b
j=1

∑nj

k=1 log(yjk/ȳj) and cumulant function λ(ν) =

N log Γ(ν) − ∑b
j=1 log Γ(njν). The REML estimator of γ is obtained by equat-

ing D(y) to its expectation,

D(y) = λ̇(ν) = Nψ(ν)−
b∑

j=1

njψ(njν)

where ψ() is the digamma function. This can be compared to maximum likelihood
estimation of γ which would have log(ν) in place of ψ(njν) in the last term.
Compare with Cox and Reid (1987, p. 12) and McCullagh and Nelder (1989, p.
295).

Now consider the general case in which the φjk are general functions of γ. The
log-likelihood is

`y =
b∑

j=1

nj∑
k=1

[
1

φjk
{yjkθj − κ(θj)}+ c(yjk, φjk)

]

=
b∑

j=1

[
1

αj
{tjθj − κ(θj)}+

nj∑
k=1

c(yjk, φjk)

]

where αj = (
∑nj

k=1 φ
−1
jk )−1, tj = αj

∑nj

k=1 φ
−1
jk yjk and βj = κ̇(θj). Each tj is sufficient

for βj and is distributed as ED(βj, αj). The conditional log-likelihood of y given
the tj is

`y|t =
b∑

j=1

{ nj∑
k=1

c(yjk, φjk)− c(tj, αj)
}
.

If the yjk are normally distributed, this is equivalent to the usual REML log-
likelihood given in Section 2. If the yjk are gamma, the function c(y, γ) is as
given above. If the yjk are inverse-Gaussian, we can take c(y, γ) = 1/(2γy) −
(1/2) log γ − (3/2) log y − (1/2) log 2π.
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