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Abstract

In this paper we give a general definition of residuals for regression models
with independent responses. Our definition produces residuals which are exactly
normal, apart from sampling variability in the estimated parameters, by inverting
the fitted distribution function for each response value and finding the equivalent
standard normal quantile. Our definition includes some randomization to achieve
continuous residuals when the response variable is discrete. Quantile residuals are
easily computed in computer packages such as SAS, S-Plus, GLIM or LispStat, and
allow residual analyses to be carried out in many commonly occurring situations in
which the customary definitions of residuals fail. Quantile residuals are applied in
this paper to three example data sets.

Keywords: deviance residual; exponential regression; generalized linear model; lo-
gistic regression; normal probability plot; Pearson residual.

1 Introduction

Residuals, and especially plots of residuals, play a central role in the checking of statistical
models. In normal linear regression the residuals are normally distributed and can be
standardized to have equal variances. In non-normal regression situations, such as logistic
regression or log-linear analysis, the residuals, as usually defined, may be so far from
normality and from having equal variances as to be of no practical use. A particular
problem occurs when the response variable is discrete and takes on a small number of
distinct values, as for Poisson data with mean not far from zero or binomial data with
mean close to either zero or the number of trials. In such situations the residuals lie
on nearly parallel curves corresponding to distinct response values, and these spurious

∗This preprint is now published as: Dunn, K. P., and Smyth, G. K. (1996). Randomized quantile
residuals. J. Comput. Graph. Statist., 5, 236–244.
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curves distract the eye seriously from any meaningful message that might be contained in
a residual plot.

In this paper we give a general definition of residuals for regression models with in-
dependent responses. Our definition produces residuals which are exactly normal, apart
from sampling variability in the estimated parameters, by inverting the fitted distribution
function at each response value and finding the equivalent standard normal quantile. This
approach is closely related to that of Cox and Snell (1968), but whereas Cox and Snell
concentrate on mean and variance corrections we concentrate on the transformation to
normality. Our definition includes some randomization to achieve continuous residuals
when the response variable is discrete. Quantile residuals are easily computed in com-
puter packages such as SAS, S-Plus, GLIM or LispStat, and allow residual analyses to be
carried out in many commonly occurring situations in which the customary definitions of
residuals fail.

Special cases of quantile residuals have been used by Brillinger and Preisler (1983)
and Brillinger (1996). For other work on residuals for non-normal regression models see
Pierce and Schafer (1986) or McCullagh and Nelder (1989) and the references therein. In
the discussion at the end of the paper we briefly indicate how quantile residuals may be
extended to models with dependent responses.

2 Pearson and Deviance Residuals

Let y1, . . . , yn be responses and for each i let xi be a vector of covariates. The yi are
assumed to be independent and to follow a distribution P(µi,φ) where µi = E(yi) and
φ is a parameter vector common to all the yi. The µi are assumed to depend on the xi

and a vector of regression parameters β. We have particularly in mind generalized linear
models (McCullagh and Nelder, 1989) in which the probability density or mass function
of yi has the form

f(y; θi, φ) = a(y, φ) exp[{yθi − κ(θi)}/φ]

where a() and κ() are known functions and µi = κ′(θi). In this model we have var(yi) =
φV (µi) where V (µi) = κ′′(θi). It is customary to assume that g(µi) = xT β where g()
is a known link function. The parameter φ is the proportionality constant in the mean-
variance relationship and is known as the dispersion parameter.

In the context of generalized linear models, two definitions of residuals have been
commonly used in practice. The Pearson residual is defined by

rp,i =
yi − µ̂i

V (µ̂i)1/2

where µ̂i is the fitted value for µi. The Pearson residual has the advantage that its mean
and variance are exactly zero and φ respectively, if sampling variability in µ̂i is small.
The deviance residuals are defined in terms of the unit deviances. For the above model,
let t(y, µ) = yθ − κ(θ). Assuming that y is in the domain of µ, the unit deviance is

d(y, µ) = 2{t(y, y)− t(y, µ)}
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The deviance residual is
rd,i = d(yi, µ̂i)

1/2sign(yi − µ̂i)

Pierce and Schafer (1986) have argued on theoretical grounds that the deviance residuals
should be more nearly normal than the Pearson. Indeed both converge to normality as
φ→ 0 relative to the µi, the Pearson residuals at rate O(φ1/2) by the Central Limit The-
orem and the deviance residuals at O(φ) by the saddle-point approximation to f(y; θi, φ).
The Pearson and deviance residuals coincide and are exactly normal, ignoring variability
in µ̂i, for the normal linear model. The deviance residual is also exactly normal when
the response is inverse-Gaussian. In other cases and for φ/µ large however, neither type
of residual can be guaranteed to be closely normal, and the deviance residuals do not
generally have zero means or equal variances even at the true values µi.

3 Randomized Quantile Residuals

Let F (y;µ, φ) be the cumulative distribution function of P(µ, φ). If F is continuous, then
the F (yi;µi, φ) are uniformly distributed on the unit interval. In this case, the quantile
residuals are defined by

rq,i = Φ−1{F (yi; µ̂i, φ̂)}

where Φ() is the cumulative distribution function of the standard normal. Apart from
sampling variability in µ̂i and φ̂, the rq,i are exactly standard normal. This implies that
the distribution of rq,i converges to standard normal if β and φ are consistently estimated.
The above definition is a special case of Cox and Snell’s (1968) “crude” residuals.

Example1: Leukemia data. Feigl and Zelen (1965) discuss some data relating the survival
times yi of leukemia patients to their initial white blood cell counts xi and to existence
of AG-factor. Following Feigl and Zelen, we treat the survival times as exponential, yi ∼
Exp(µi). We work with a log-linear model for the means, including separate intercepts
for the two AG-factor groups,

log µi =

{
α1 + β log xi AG positive
α2 + β log xi AG negative

Cox and Snell (1968) considered a subset of this data, and defined approximately expo-
nential crude residuals Ri = yi/µ̂i, where the µ̂i are the estimated means. In this case the
quantile residuals

rq,i = Φ−1{1− exp(yi/µ̂i)}

are a simple transformation of the Ri. A normal probability plot of the quantile residu-
als confirms the assumption of an exponential distribution. Figure 1 plots the quantile
residuals versus the covariate. The three residuals (cases 17, 31 and 33) in the upper
right-hand corner of the plot are relatively separate from the body of the other residuals,
and without them there appears to be a marked negative trend. While the pattern is not
sufficient to contradict the model assumptions, it raises the possibility that cases 17, 31
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Figure 1: Plot of quantile residuals versus the covariate for the leukemia data. Circles
represent patients which are AG-positive, crosses AG-negative.
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and 33 may be outliers, or that the dispersion of the residuals increases at the largest
white blood cell counts. In any case, the three cases identified appear from the residual
plot to be jointly influential. Assigning the identified cases zero weight increases β̂ nearly
three-fold, from -0.30 to -0.84 compared with a standard error of 0.14.

If F is not continuous, a more general definition of quantile residuals is required. Let
ai = limy↑yi

F (y; µ̂i, φ̂) and bi = F (yi; µ̂i, φ̂). We define the randomized quantile residual
for yi by

rq,i = Φ−1(ui)

where ui is a uniform random variable on the interval (ai, bi]. Again, the rq,i are exactly

standard normal, apart from sampling variability in µ̂i and φ̂. The randomization strat-
egy employed here is similar to the strategy of jittering (Chambers et al, 1983) to prevent
masses of overlapping points in plots. Whereas jittering applies a uniform random com-
ponent to the response, our uniform random component is on the cumulative probability
scale and is tailored to the actual probability mass at the point in question. Our random-
ization is the minimum necessary so that no granularity remains in the resulting residual
distribution.

Example 2: Simulated binomial data. A logistic linear regression was used to model 60
binomial observations with binomial denominator n = 3, i.e., the responses were assumed
to be independently distributed as yi ∼ bin(n, pi), with n = 3 and logit(pi) = β0 + β1xi

were xi is a covariate. The first plot of Figure 2 displays the deviance residuals versus
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Figure 2: Deviance and quantile residuals versus the covariate from a logistic regression.
The response is simulated bin(3, p) with logit p depending quadratically on the covariate.
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the covariate. The points in this plot lie on four parallel curves corresponding to the four
possible values for the response. The curves make it difficult to see any other pattern in
the data. The second plot displays the quantile residuals versus the covariate. In this
plot is clear that the residuals follow a quadratic pattern. The data for this example was
in fact computer generated with logit(pi) depending quadratically on the xi. Figure 3
shows the residual plots once the quadratic term has been included in the regression. The
deviance residuals lie on prominent curves while the quantile residuals now show random
scatter.

Example 3: Fathers’ and sons’ occupations. Brown (1974) and Kotze and Hawkins
(1984) analyze a sparse 14 × 14 contingency table showing the cross-classification of oc-
cupations of fathers (rows) by occupations of sons (columns). The data was originally
published by Pearson (1904) and appears also in Hand et al (1994). Brown, Kotze and
Hawkins were interested in identifying those cells which are outliers relative to the inde-
pendence model. We take a similar approach, with the difference that the quantile residual
approach allows us to look for outliers relative to a more realistic model. Observing that
there is an apriori expectation that sons will be influenced by their father’s occupation,
we fit a log-linear Poisson regression model to the counts with row and column effects and
with an effect for equality of father’s and son’s occupation, i.e., yij ∼ Pois(µij), with

log µij = µ0 + αi + βj + δxij (1)

and xij = 1 if i = j and 0 otherwise. Figure 4 is a normal probability plot of quantile
residuals from this model. The largest positive residual corresponds to the (2,2) cell: sons
almost always continue to work in the Arts if their father did. Figure 4 shows evidence of
large negative residuals as well as large positive residuals. Although none of the negative
residuals are individually significant, and the actual contingency table cells represented in
the left tail of the probability plot varies with each realization of the quantile residuals, the
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Figure 3: Deviance and quantile residuals versus the covariate for a well fitting logistic
regression.
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Figure 4: Normal probability plot with identity line of the quantile residuals from the
fathers’ and sons’ occupation data.
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overall pattern is preserved across realizations. The quantile residual plot shows in this
way that there are too many small counts in the contingency table to be compatible with
the above model. No other method which has been applied to this data in the literature
is able to show this aspect of the data. Although Figure 4 shows clear evidence of lack of
fit, the model (1) and the models which arise from it by deleting selected cells does give
an appreciably better fit to this data than the independence models considered by earlier
authors.

4 Discussion and Extensions

In this paper quantile residuals are computed by finding the equivalent standard normal
deviate for each response observation. In principle, any reference distribution could have
been chosen for the residuals. Cox and Snell (1968) for example computed exponential
residuals for data of Example 1 and Brillinger and Preisler (1983) and Brillinger (1996) use
uniform residuals. However asymmetry seems an unnecessary complication, and bounded
distributions introduce a spurious pattern (the boundary itself) and make it difficult
to distinguish between large residuals and outright outliers. The normal distribution is
recommended in this paper on the basis that normal variation is that which most people
have practice interpreting graphically.

Randomization is used to produce continuously distributed residuals when the re-
sponse is discrete or has a discrete component. This means that the quantile residuals
will vary from one realization to another for a given data set and fitted model. For the sake
of brevity, we have given only one realization of the quantile residuals for each example in
this paper. In practice though we have found it useful to routinely plot four realizations
of the quantile residuals. Any pattern in the residuals which is not consistent across the
realizations is then ignored. The idea of applying a continuous random component to
discrete responses so that methods for continuous variables can be applied is in fact very
old. See Pearson (1950) for a discussion. As used in this paper, randomization is a device
through which the aggregate pattern of the residuals becomes apparent. Since decisions
do not depend on individual realizations, the obvious objections to randomization which
arise in the context of tests and confidence intervals do not seem to apply.

Quantile residuals can generalize any of the usual diagnostic methods which use resid-
uals. For example, an added variable plot (Cook and Weisberg, 1982) could be computed
for a generalized linear model by plotting the quantile residuals, for the model excluding
x, versus xa, where xa is x adjusted for the other covariates in the model. The vector xa

would be chosen to be orthogonal to the other covariates, relative to the covariance matrix
of the yi. It might be computed as the residuals from weighted least squares regression
of x on the other covariates, using as weights the working weights from the generalized
linear model.

Independence of the response observations was assumed in this paper. The method
of quantile residuals can be extended to dependent data situations by expressing the
multivariate likelihood as a sum of univariate conditional likelihoods. For example we
might define the ith conditional quantile residual from the conditional distribution of yi
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given y1, . . . , yi−1 instead of from the marginal distribution of yi as in the paper. This
would provide independent, standard normal residuals.

Finally we consider the sampling variability of the µ̂i, which has for simplicity been
ignored throughout this paper. Treating the µ̂i as fixed is appropriate when good in-
formation is available on the model parameters, but may be unrealistic for example for
designed experiments in which the number of parameters is not small compared to the
number of observations. In normal linear models, REML estimation of the variance struc-
ture is obtained from the marginal distribution of any set of zero mean contrasts, ZTy
say. In a similar way, independent and identically distributed residuals could be obtained
by transforming from the yi to any orthonormal set of zero mean constrasts. Extending
this idea to non-normal regression is more difficult, but could in principle be done using
the conditional approach of Smyth and Verbyla (1995). In that paper, Smyth and Verbyla
argue that REML estimation for generalized linear models should proceed by considering
the conditional distribution of the yi given β̂. Independent quantile residuals could there-
fore be defined by considering the conditional distribution of each yi given y1, . . . , yi−1

and β̂. For certain values of i this distribution would be degenerate; these values could
be ignored without loss of information.
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