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Abstract

The problem of determining if a bivariate normal correlation changes with respect
to time or some other covariate is considered. It is assumed that the means and
standard deviations of the normal random variables can be consistently estimated
from the entire data run, and do not need to be re-estimated for each covariate value.
A new estimator of a bivariate normal correlation is given that has useful performance
down to samples of size one. This allows regression type modelling of the correlation
without unnecessary loss of resolution. The arc-tanh transformation of this estimator
has a symmetric Fisher’s z-distribution about the arc-tanh correlation. A method of
smoothing the correlation estimates is given using moving average smoothers of the
sufficient statistics from which the correlation estimator is calculated.

Keywords: correlations; moving averages; z-distribution; z-transformation; hyper-
bolic secant distribution.

1 Introduction

Since the discovery of the bivariate normal distribution, correlation coefficients have been
the most popular method of measuring the strength of relationships between approxi-
mately normal variables. In studies which focus on the stability of relationships over
time or with respect to uncontrolled variables, it is of interest to determine if correlation
coefficients change with respect to these variables. When a sample of bivariate observa-
tions of reasonable size is available for each value of the covariate, the Pearson correlation
coefficient r can be calculated for each sample. Differences can then be estimated or tested
for using Fisher’s result that z = tanh−1 r is approximately normally distributed with
approximate mean ζ = tanh−1 ρ, where ρ is the true correlation, and variance approx-
imately constant with respect to ρ (Fisher, 1925; Hotelling, 1953; Johnson and Kotz,
1970, p. 229; Mudholkar, 1983). See Rao (1973, p. 432) for a biological application and
Haney and Lloyd (1978), Watson (1980), Maldonado and Saunders (1981) and Lerman
and Schechtman (1989) for applications to financial statistics. Campbell (1981) gives
a graphical procedure for comparing correlations. Lerman and Schechtman (1989) and
Hawkins (1989) use Fisher’s z-transform to test for a correlation change at an unknown
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time. Muirhead (1982) develops a different method of testing for a correlation change,
using cusums of statistics based on the log-likelihood ratio.

In this note it is assumed that the bivariate normal means and variances can be
consistently estimated from the entire data run, and do not need to be re-estimated for
each covariate value. It is of interest therefore to consider correlation estimators assuming
the means and standard deviations to be given. An apparently new correlation estimator
ρ̃ is given in Section 2 that has useful performance down to samples of size one. This
allows regression type modelling of the correlation without unnecessary loss of resolution.
The new estimator is more accurate than r for any sample size and exactly unbiased and
constant variance on the arc-tanh scale. It reduces to r when sample means and variances
are re-estimated from the same data sample. It is equivalent or superior in performance
to the maximum likelihood estimator assuming known means and variances except when
the sample size and |ρ| are both reasonably large.

Time series smoothing and regression modelling of the correlations is considered in
Section 3. It is shown that to obtain efficient smoothed estimators it is necessary to
smooth the sufficient statistics from which the correlations are calculated rather than
smooth the correlations themselves.

2 A correlation estimator

Let (X1, Y1), . . . , (Xn, Yn) be a bivariate normal sample with µX = µY = 0, σX = σY = 1
and corr(X,Y ) = ρ. If µX , µY , σX and σY are considered known, then P =

∑
XiYi and

S =
∑
(X2

i + Y 2
i ) are together sufficient for ρ, and the maximum likelihood estimator ρ̂

is a root of the cubic polynomial

ρ3 − ρ2
1

n
P + ρ(

1

n
S − 1)− 1

(Kendall and Stuart, 1961, p. 39). The transformed maximum likelihood estimate m =
tanh−1 ρ̂ has variance 1/[n(1 + ρ2)] + O(1/n2). It is unbiased and symmetric for ρ = 0;
otherwise the bias and third cumulant are O(1/n) and O(1/n3) respectively. For large n,
the polynomial is likely to have only one real root, but in general there may be three real
roots in the admissible range and the likelihood itself must be evaluated to distinguish
them.

A closed form estimator of ρ which is superior to ρ̂ in small samples can be constructed
by observing that positively correlated observations (X,Y ) will tend to lie further from
the origin in the (1, 1) direction than in the (1,−1) direction, and vice versa for negatively
correlated observations. Let Ui = (Xi + Yi)/

√
2 be the projection of (Xi, Yi) onto the

(1, 1) line and let Vi = (Xi − Yi)/
√
2 be the projection onto the (1,−1) line. Then Ui

and Vi are independent with variances 1 + ρ and 1 − ρ respectively. The sum of the
squared projected lengths in the (1, 1) direction relative to that in the (1,−1) direction is∑
U2
i /

∑
V 2
i , which has (1+ ρ)/(1− ρ) times an Fn,n distribution. Taking the logarithm,

h =
1

2
log

∑
U2
i∑

V 2
i

is distributed as 1
2 logF plus 1

2 log[(1 + ρ)/(1 − ρ)] = tanh−1 ρ, where F has an Fn,n

distribution.
The distribution of 1

2 logF is often called Fisher’s z-distribution in the literature,
following Fisher (1924). A recent reference in Barndorff-Nielsen, Kent and Sorensen
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(1982). The probability density of h is

pH(h) =
1

2n−1B(n2 ,
n
2 )

sechn(h− ζ)

where ζ = tanh−1 ρ. This distribution is symmetric about ζ with variance 1
2ψ

′(n/2) and

fourth cumulant 1
8ψ

(3)(n/2) where ψ(·) is the digamma function. See Johnson and Kotz
(1970, p. 78). For n = 1, the distribution is hyperbolic secant with density

pH(h) =
1

π
sech(h− ζ)

and variance π2/4. The hyperbolic secant distribution was introduced by Perks (1932)
and Talacko (1956), and is discussed by Johnson and Kotz (1970, p. 15) and Manoukian
and Nadeau (1988). For n = 2, the distribution is logistic with density

pH(h) =
1

2
sech2(h− ζ)

and variance π2/12, and this distribution is discussed by Johnson and Kotz (1970, Chapt.
22). The distribution of h approaches normality rapidly as n increases. The approxima-
tion to normality is already good for the logistic distribution, as discussed by Johnson
and Kotz (1970, pp. 5–6).

The distribution of h can be compared with that of the sample correlation coefficient

r =

∑
(Xi − X̄)(Yi − Ȳ )

[
∑
(Xi − X̄)2

∑
(Yi − Ȳ )2]1/2

which is the maximum likelihood estimator for ρ with µX , µY , σX and σY considered
unknown. The sample correlation returns useful estimates for n ≥ 3. The probability
density function of r is given for example by Hotelling (1953). The density of z = tanh−1 r
can be written as

pZ(z) = c(tanh ζ tanh z) sechn−1ζ sechn−2z

where c(·) is an infinite order polynomial or power series. When ρ = 0, the distribution of
z is the same as that for h, but with n−2 substituted for n, an identity that was observed
by Irwin (1953). Otherwise, z is slightly biased and skew. Asymptotic expressions for
the moments of z are given by Hotelling (1953) and Johnson and Kotz (1970, p. 229).

We may also express h as a function of the sufficient statistics, since
∑
U2
i =

∑
(X2

i +
Y 2
i ) + 2

∑
XiYi = S +2P and

∑
V 2
i = S − 2P . Therefore

∑
U2
i /

∑
V 2
i = (1+ ρ̃)/(1− ρ̃),

with ρ̃ = 2P/S = tanhh. The expression ρ̃ = 2P/S makes it clear that ρ̃ reduces to r
if the observations are standardized using sample means and standard deviations, i.e., if
Xi and Yi are replaced by (Xi − X̄)/σ̂X and (Yi − Ȳ )/σ̂Y respectively, where σ̂2X is any
multiple of

∑
(Xi − X̄)2 and σ̂2Y is the same multiple of

∑
(Yi − Ȳ )2. If the variances is

standardized but the variables are not mean corrected, i.e., if Xi and Yi are replaced by
Xi/σ̂X and Yi/σ̂Y , then ρ̃ has the same distribution as r but with n− 1 in place of n− 2.
In a precise sense then, one degree of freedom is lost if we need to estimate the variances
from the same data, and a second is lost if we need to estimate the means as well.

It is easily seen that h is invariant under rescaling of the bivariate data. The Xi and Yi
may therefore have any common and constant variance without affecting the distribution
of h. For n = 1, the estimator ρ̃ may be written as sin 2θ in terms of the spherical
coordinate representation X = a cos θ, Y = a sin θ.
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Table 1: Bias and standard deviation of two estimators of tanh−1 ρ for several samples
sizes and values of ρ. m is the maximum likelihood estimator and h is the hyperbolic
secant unbiased estimator.

n = 1 n = 2 n = 3
Estimator ρ bias std bias std bias std

h Any 0.00 1.57 0.00 0.91 0.00 0.68

m 0.0 0.00 1.93 0.00 1.13 0.00 0.84
m 0.5 −0.03 1.96 −0.01 1.12 0.01 0.83
m 0.9 0.09 2.00 0.14 1.02 0.13 0.66

Table 2: The efficiency of h̄ for estimating a constant correlation when the hi are calcu-
lated from windows of size n, relative to h calculated from the entire data set.

n 1 2 3 4 5 6 7 8 9 10

(n/2)ψ′(n/2) 2.47 1.64 1.40 1.29 1.23 1.18 1.16 1.14 1.12 1.11

For large n, the efficiency of h relative to m is 1/(1 + ρ2). For small n though the
picture is different. The bias and standard deviation of h and m are given in Table 1
for sample sizes n = 1, 2 and 3 and for ρ = 0, 0.5 and 0.9. The hyperbolic estimator h
has the smaller mean square error for these very small sample sizes. Values for m were
obtained from simulation using the matrix programming language Matlab (Mathworks,
1991) and may differ by at most 0.01 from true values due to round-off and sampling
errors.

3 Applications

Suppose that x1, . . . , xN and y1, . . . , yN are prewhitened sequences standardized to have
zero mean and unit variance, and that corr(Xi, Yi) = ρi. In principle we may simply
calculate the correlation response hi = tanh−1[2xiyi/(x

2
i + y2i )] for each bivariate obser-

vation and apply regression methods to model the correlations. If it can be assumed that
ζi = tanh−1 ρi = βTwi, where wi is a vector of covariates, then the least squares estimator

β̂ = (W TW )−1W Th

where W is the matrix with ith row wi and h = (h1, . . . , hN )T , is unbiased and consistent
for β with covariance matrix (W TW )−1π2/4. Also β̂ is likely to be very nearly normally
distributed. Manoukian and Nadeau (1988) show that the mean of a hyperbolic secant
sample is closely normal even for very small n. In a similar way, standard nonlinear least
squares methods can be used to estimate β given a more general correlation function
ζi = g(wi, β) where g(·) is some known function.

The approach based on individual hyperbolic secant correlation responses however
is inefficient. Let ζi = β0 + βTwi and suppose that the covariates wi have been the
mean corrected, i.e., that the matrix W with ith row wi has all column sums zero. Then
the maximum likelihood estimator of β has asymptotic covariance matrix (W TW )−1(1+
tanh2 β0)

−1 and the asymptotic relative efficiency of the hyperbolic secant least squares
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Figure 1: Smoothed correlation responses for a simulated data set. 200 bivariate obser-
vations were simulated so that the middle 50 observations have correlation 0.6 and the
others correlation zero. A window width of 60 observations has been used for smoothing.
The dashed lines give 95% and 99% confidence bands assuming constant correlation.

estimator is 4π−2(1 + tanh2 β0)
−1, which is about 41% for β0 near zero and decreases to

half that for |β0| large. Most of the lost information can be recovered by calculating h
from larger windows of observations. To quantify this, suppose that the correlations ρi
are constant and that we estimate the arc-tanh correlation by averaging N/n values hi
calculated from distinct sets of n bivariate observations. The variance of the resulting
estimator h̄ is n/(2N)ψ′(n/2), which has a minimum of about 1/N at n = N . Relative
to this minimum the variance is given in Table 2. This shows that in aggregating the
correlations it is important to average or smooth the U2

i and V 2
i from which the suffi-

cient statistics are calculated rather than to average or smooth the correlation responses
themselves.

For example, consider the following synthetic data sequence. Standard normal obser-
vationsXi and Yi, i = 1, . . . , 200 were simulated so that corr(Xi, Yi) = 0.6 for 76 ≤ i ≤ 125
and corr(Xi, Yi) = 0 otherwise. The sequences U2

i = (Xi + Yi)
2 and V 2

i = (Xi − Yi)
2

were then smoothed using unweighted moving average filters of various window widths
n, producing smoothed sequences U∗2

i and V ∗2
i , i = 1, . . . , 200− n+ 1. For each window

width, the smoothed correlation responses hi =
1
2 log(U

∗2
i /V ∗2

i ) were calculated and plot-
ted. Under the assumption of constant correlation, the hi should have a z-distribution
on n, n degrees of freedom about the arc-tanh correlation. The window width was gradu-
ally increased until a clear picture emerged. Not surprisingly, since there are 50 unusual
observations in the middle of the sequence, the most interesting pictures emerged for win-
dow widths around 50. The smoothed correlation responses in Figure 1 are for n = 60.
Also given in Figure 1 are approximate 95% and 99% confidence bands under the as-
sumption of constant correlation. The height of the bands is h̄ ± 1

2 log f where f is the
(1 − p)th quantile of the Fn,n distribution. For a (1 − α)100% confidence band, p was
set to 1 − (1 − α/2)n/N where N = 200 is the sample size. The confidence bands are
strictly appropriate for correlation responses calculated from non-overlapping windows of
observations, and are slightly optimistic in the current case. Experimentation with other
simulated data sets suggests that the level of optimism is small.

The above smoothing technique was applied to data from two variables measured si-
multaneously on a continuously operating ICI (Imperial Chemical Industries) production
process. The two series of 100 observations each are given in graphical form in Muir-
head (1982). For the current analysis the series were prewhitened using univariate AR(1)
models, after removing linear trends, as described by Muirhead. Smoothed correlation
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Figure 2: Smoothed correlation responses for the ICI production series data. Original
series length is 100, and a window width of 15 observations has been used for smoothing.
The dashed lines give 95bands assuming constant correlation.

response plots were then formed for various window sizes. For any window size between
about 10 and 22 the plot shows that the correlation is decreasing at the end of the se-
quence; see Figure 2 which is for n = 15. Muirhead was concerned with testing whether
the cross-correlation between the innovation sequences in this series of data was less than
the long run value of 0.49. From Figure 2 it appears that not only is this so but a further
decrease is discernible during the run. Introduction of measuring errors towards the end
of the period is one possible explanation.

A circumstance in which it may be practical and beneficial to calculate unsmoothed
correlation responses is the availability of very long data series. Consider the wind speed
data analysed by Haslett and Raftery (1989) consisting of daily mean wind speeds at
12 meteorological stations in Ireland during the period 1961–1978. Haslett and Raftery
omitted the Rosslare site on the south east coast from the main analysis, concluding that
it may be subject to meteorological influences different from those at the other sites. Here
we consider cross-correlations between Rosslare and its nearest inland neighbour Kilkenny.
Haslett and Raftery model the series using fractionally differenced AR models. Here we
transform to normality and remove seasonal trends as described by Haslett and Raftery,
but do not pre-whiten the series. Unsmoothed correlation responses hi, i = 1, . . . , 6574
were calculated after mean correcting using the sample means and standardizing the
variances using the sample standard deviations. The correlation responses represent a
coloured process, since the original bivariate series was coloured, but are unbiased for
the arc-tanh correlations of the wind speeds about their seasonal trends. Ordinary least
squares methods suggest that the cross-correlation does not drift linearly over time but
there is a significant annual cycle. Annual harmonics (with a sin and a cos term for each
harmonic) were fitted to the hi by ordinary least squares. The first three harmonics were
highly significant on the basis of the usual least squares calculations. The annual trend
line is shown in Figure 3 together with the mean correlation response for each day of the
year. The residual mean square error from the regression is 2.434, close to the value of
2.467 that would be expected on the basis of hyperbolic secant errors. This analysis is
crude and could be refined by modelling serial dependence in the hi using univariate time
series methods or by using a hyperbolic secant likelihood instead of least squares, but
the conclusion seems clear enough. The cross-correlation decreases in summer to around
tanh(0.66) or 0.58 and increases in winter to around tanh(1.25) or 0.85. Since the mean
wind speeds also fall in summer and rise in winter, it appears that wind speeds are less
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Figure 3: Annual pattern in the arc-tanh correlation between wind speeds at Rosslare
and Kilkenny during the years 1961–78. The solid line is the seasonal trend made up of
three annual harmonics. Dots are mean correlation response for each day of the year.

correlated during the season when they are lower, and this may have implications for
wind power generation.
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