/ Home
S-Archive Download Script
mmnl MM Estimation for Nonlinear Regression
DESCRIPTION
Estimates a nonlinear regression equation using 95% efficient MM estimation. User supplies the regression function and its gradient matrix.
 
USAGE
mmnl(X,y,b,fun,grad,scale=NULL,trace=F)
 
REQUIRED ARGUMENTS
X numeric design matrix. Number of rows must agree with y.
y numeric vector of observations.
b numeric vector of starting values for the parameters.
fun function giving vector of fitted values as a function of X and b.
grad function giving gradient matrix as a function of X and b.
 
OPTIONAL ARGUMENTS
scale numeric constant giving scale of the residuals. By default this is mscale(y - fun(X,b)).
trace logical constant. If true, parameters and criterion are printed at each iteration.
 
VALUE
b numeric vector of estimated parametes.
fitted numeric vector of same length as y of fitted values.
residuals numeric vector of same length as y of residuals.
scale numeric constant giving the estimated or input scale.
criterion numeric constant giving the estimated criterion functoin.
 
DETAILS
Uses Hampel's redescending psi function. The estimators simultaneously have high breakdown and 95% efficiency under normal errors given consistent high breakdown starting values.
 
REFERENCES
Yohai, V. J. (1987). High breakdown point and high efficiency robust estimates for regression. Ann. Statist. 15, 642-656.

Stromberg, A. J. (1993). Computation of high breakdown nonlinear regression parameters. J. Amer. Statist. Assoc. 88, 237-244.

Smyth, G. K., and Hawkins, D. M. (2000). Robust frequency estimation using elemental sets. Journal of Computational and Graphical Statistics 9, 196-214. (Abstract - Zipped PostScript)
 
SEE ALSO
mscale, rho.hampel, psi.hampel, mmfreq, robfreq
 
EXAMPLES
The function mmfreq gives an example of using mmnl.

 

S-Archive Download Script

Gordon Smyth. Copyright © 1996-2016. Last modified: 10 February 2004