/ Home |
S-Archive | Download Script |
neldmead | Nelder-Mead Simplex Algorithm |
fobj | real-valued function. | |
startvec | numeric vector of length 2 or greater. Initial value for the first argument of fobj. |
print.level | Desired level of output during the iteration. Print.level = 0 for quiet running, = 1 for function value at each iteration, = 2 to prompt for continuation after each iteration. | |
tol | Desired accuracy. | |
... | Additional arguments to be passed to fobj. |
x | numeric vector. Argument of fobj at the local minima. | |
fmin | value of fobj at the local minima. | |
iter | number of iterations used. |
# Find a least trimmed SS (LTS) regression estimator # neldmead is more accurate but slower than the built-in # S-Plus function ltsreg > x <- 1:20 > y <- x + rnorm(20) > lts <- function(ab, x, y) { e <- y - ab[1] - ab[2] * x trim <- floor(length(y)/2) + floor(length(ab)/2) mean(sort(e^2)[1:trim]) } > neldmead(lts,c(0,0),x=x,y=y) $x: [1] -0.09447435 1.00664786 $fmin: [1] 0.04699288 $iter: [1] 50
S-Archive | Download Script |
Gordon Smyth. Copyright © 1996-2016. Last modified: 10 February 2004