/ Home
S-Archive Download Script
pointwise.logit   Pointwise confidence intervals for logit predictions
DESCRIPTION
Computes predicted values and pointwise confidence intervals for logistic regression.
 
USAGE
pointwise.logit(glm.obj,newdata,coverage=0.99)
 
REQUIRED ARGUMENTS
glm.obj   glm object with family=binomial and default link
newdata   list holding values of the covariates for which predictions are required. See predict.lm for details.
 
OPTIONAL ARGUMENTS
coverage   confidence level for confidence intervals
 
VALUE
List with components:
upper   upper limits of confidence intervals
fit   predicted values
lower   lower limits of confidence intervals
 
DETAILS
This routine is an improvement on the S-Plus function pointwise for logistic regression objects. Confidence intervals are computed using a normal approximation on the linear predictor scale, and then mapped via the logistic transform to the probability scale. The generalized linear model dispersion parameter is assumed to be 1.

Note that the S-Plus function pointwise produces correct predicted values but its standard errors and confidence intervals are not reliable for logistic regression, or for any discrete generalized linear model.

EXAMPLES
glm.obj <- glm(y~x,family="binomial")
pw <- pointwise.logit(glm.obj,newdata="x")
 
 
S-Archive Download Script

Gordon Smyth. Copyright © 1996-2016. Last modified: 10 February 2004