

Types of microarrays in this talk

- Linear modelling approach in this talk applies to both single channel (Affymetrix) and two-colour arrays
- Need to cover some special features of two-colour arrays
- The examples are two-colour
- Two colour with common reference is virtually equivalent to single channel from an analysis point of view

Log-Ratios or Single Channel Intensities?

- Tradition analysis, as here, treats log-ratios M=log(R/G) as the primary data, i.e., gene expression measurements are relative
- Alternative approach treats individual channel intensities R and G as primary data, i.e., gene expression measures are absolute (Wolfinger, Churchill, Kerr)
- Single channel approach makes new analyses possible but
 - make stronger assumptions
 - requires more complex models (mixed models in place of ordinary linear models) to accommodate correlation between R and G on same spot
 - requires absolute normalization methods

Comparing 3 RNA Sources	I (a) Common reference	I (b) Common reference	II Direct comparison
	A P L W	A P L 2 2 2 W	
	N = 3	N=6	N=3
Ave. variance	2		0.67
Units of material			
Ave. variance			
For k = 3, efficie	ncy ratio (Design	l(a) / Design II) = 3	3

Comparing 3 RNA Sources	I (a) Common reference	I (b) Common reference	II Direct comparison
	A P L W	A P L 2 2 2 W	
Number of Slides	N = 3	N=6	N=3
Ave. variance	2		0.67
	A = B = C = 1	A = B = C = 2	A = B = C = 2
Ave. variance		1	0.67
For k = 3, efficie	ncy ratio (Design	l(b) / Design II) = 1	1.5

Desi	an Choices in Time Series			t vs t+1		t vs	t+2		
	5		7470	TOTO	TOTA	TATO	TOTA	TATA	A
	1		1112	1213	1314	1113	1214	1114	Ave
N=3	A) T1 as common reference		1	2	2	1	2	1	1.5
	$T1 \longrightarrow T2$ T3	T4							
	B) Direct Hybridization		1	1	1	2	2	3	1.67
	$T1 \longrightarrow T2 \longrightarrow T3$	→ T4							
N=4	C) Common reference T1 T2 T3	T4	2	2	2	2	2	2	2
	D) T1 as common ref + more		.67	.67	1.67	.67	1.67	1	1.06
		-							
	$T1 \longrightarrow T2 \longrightarrow T3$	T4							
	E) Direct hybridization choice 1		.75	.75	.75	1	1	.75	.83
	$T1 \longrightarrow T2 \longrightarrow T3$	→ T4							
	F) Direct Hybridization choice 2		1	.75	1	.75	.75	.75	.83
	T1 T2 T3	T4							8

	Design C	hoices for 2	2 x 2 Factor	ial
	Indirect	A balance of dir	ect and indirect	
		II) C B A.B	$ \begin{array}{c} $	C B A A A.B
# Slides		N	= 6	
Main effect A	0.5	0.67	0.5	NA
Main effect B	0.5	0.43	0.5	0.3
Interactio n A.B	1.5	0.67	1	0.67
Table e	ntry: variance			19

- B cell development can be halted at the pro B stage by
 - Absence of the Pax5 gene
 - Absence of the Rag1 gene (which activates recombination)
 - (which activates recombination)
 - Withdrawal of the regulatory cytokine IL-7 (essential growth factor)

RNA Sources • Compare RNA from 4 sources: • Pax5-/- (knock-out cell line) • Rag1-/- (knock-out cell line) • Wt ("wild type", i.e., normal) • Wt cells with IL-7 removed after initial development commenced • Rag1-/- and IL-7 removal identify genes turned on or off by halted development rather than by Pax5

23

24

Filtering of EGFP Responders

Include TF vs EGFP differences only if they are not reproduced by the no virus vs EGFP comparison

No virus response (N)	AML1 response (A)	AML1 vs no virus contrast (A-N)	Keep?
0	1		Yes
1	1	1	Yes
1	1	0	No

